Tailored ultrasound propagation in microscale metamaterials via inertia design

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-06 DOI:10.1126/sciadv.adq6425
Rachel Sun, Jet Lem, Yun Kai, Washington DeLima, Carlos M. Portela
{"title":"Tailored ultrasound propagation in microscale metamaterials via inertia design","authors":"Rachel Sun, Jet Lem, Yun Kai, Washington DeLima, Carlos M. Portela","doi":"10.1126/sciadv.adq6425","DOIUrl":null,"url":null,"abstract":"The quasi-static properties of micro-architected (meta)materials have been extensively studied over the past decade, but their dynamic responses, especially in acoustic metamaterials with engineered wave propagation behavior, represent a new frontier. However, challenges in miniaturizing and characterizing acoustic metamaterials in high-frequency (megahertz) regimes have hindered progress toward experimentally implementing ultrasonic-wave control. Here, we present an inertia design framework based on positioning microspheres to tune responses of 3D microscale metamaterials. We demonstrate tunable quasi-static stiffness by up to 75% and dynamic longitudinal-wave velocities by up to 25% while maintaining identical material density. Using noncontact laser-based dynamic experiments of tunable elastodynamic properties and numerical demonstrations of spatio-temporal ultrasound wave propagation, we explore the tunable static and elastodynamic property relation. This design framework expands the quasi-static and dynamic metamaterial property space through simple geometric changes, enabling facile design and fabrication of metamaterials for applications in medical ultrasound and analog computing.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq6425","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The quasi-static properties of micro-architected (meta)materials have been extensively studied over the past decade, but their dynamic responses, especially in acoustic metamaterials with engineered wave propagation behavior, represent a new frontier. However, challenges in miniaturizing and characterizing acoustic metamaterials in high-frequency (megahertz) regimes have hindered progress toward experimentally implementing ultrasonic-wave control. Here, we present an inertia design framework based on positioning microspheres to tune responses of 3D microscale metamaterials. We demonstrate tunable quasi-static stiffness by up to 75% and dynamic longitudinal-wave velocities by up to 25% while maintaining identical material density. Using noncontact laser-based dynamic experiments of tunable elastodynamic properties and numerical demonstrations of spatio-temporal ultrasound wave propagation, we explore the tunable static and elastodynamic property relation. This design framework expands the quasi-static and dynamic metamaterial property space through simple geometric changes, enabling facile design and fabrication of metamaterials for applications in medical ultrasound and analog computing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过惯性设计实现微尺度超材料中的定制超声波传播
在过去十年中,人们对微结构(超)材料的准静态特性进行了广泛研究,但它们的动态响应,尤其是具有工程波传播行为的声学超材料的动态响应,则是一个新的前沿领域。然而,高频(兆赫兹)声学超材料的微型化和表征所面临的挑战阻碍了超声波控制实验的进展。在此,我们提出了一种基于定位微球的惯性设计框架,以调整三维微尺度超材料的响应。我们展示了在保持材料密度相同的情况下,可调准静态刚度达 75%,动态纵波速度达 25%。利用基于非接触激光的可调弹性动力学特性动态实验和时空超声波传播的数值演示,我们探索了可调静态和弹性动力学特性的关系。这种设计框架通过简单的几何变化扩展了超材料的准静态和动态特性空间,使超材料的设计和制造变得简单,可应用于医疗超声和模拟计算领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1