Ostwald-Ripening Induced Interfacial Protection Layer Boosts 1,000,000-Cycled Hydronium-Ion Battery

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-13 DOI:10.1002/anie.202414420
Zhenzhen Zhao, Wei Zhang, Dong Wang, Lin Li, Qing Liang, Wenwen Li, Chang Lu, Seung Jo Yoo, Jin-Gyu Kim, Zhongjun Chen, Yujin Li, Xu Zou, Fuxi Liu, Xinyan Zhou, Kexin Song, Jingjuan Li, Weitao Zheng
{"title":"Ostwald-Ripening Induced Interfacial Protection Layer Boosts 1,000,000-Cycled Hydronium-Ion Battery","authors":"Zhenzhen Zhao, Wei Zhang, Dong Wang, Lin Li, Qing Liang, Wenwen Li, Chang Lu, Seung Jo Yoo, Jin-Gyu Kim, Zhongjun Chen, Yujin Li, Xu Zou, Fuxi Liu, Xinyan Zhou, Kexin Song, Jingjuan Li, Weitao Zheng","doi":"10.1002/anie.202414420","DOIUrl":null,"url":null,"abstract":"Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials: as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium-ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross-linked cubes on the electrode surface. The layer exposed the low-index crystal planes (100) and (110) through OR-induced electrode particle growth, supplemented by vacancy-ordered (100) superlattices that facilitated ion migration. Our design stabilized the electrode–electrolyte interface considerably, achieving a cycle life of one million cycles with capacity retention of 91.6%, and a capacity retention of 91.7% after 3000 cycles for a full battery.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414420","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Collapsing and degradation of active materials caused by the electrode/electrolyte interface instability in aqueous batteries are one of the main obstacles that mitigate the capacity. Herein by reversing the notorious side reactions include the loss and dissolution of electrode materials: as we applied Ostwald ripening (OR) in the electrochemical cycling of a copper hexacyanoferrate electrode in a hydronium-ion batteries, the dissolved Cu and Fe ions undergo a crystallization process that creates a stable interface layer of cross-linked cubes on the electrode surface. The layer exposed the low-index crystal planes (100) and (110) through OR-induced electrode particle growth, supplemented by vacancy-ordered (100) superlattices that facilitated ion migration. Our design stabilized the electrode–electrolyte interface considerably, achieving a cycle life of one million cycles with capacity retention of 91.6%, and a capacity retention of 91.7% after 3000 cycles for a full battery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ostwald-Ripening 引发的界面保护层提升了 100 万次循环的锂离子电池性能
水电池中电极/电解质界面不稳定导致的活性材料塌陷和降解是降低容量的主要障碍之一。在这里,我们通过逆转臭名昭著的副反应,包括电极材料的损失和溶解:当我们在氢离子电池中的六氰合铁酸铜电极的电化学循环中应用奥斯特瓦尔德熟化(OR)时,溶解的铜离子和铁离子经历了一个结晶过程,在电极表面形成了一个由交联立方体组成的稳定界面层。该层通过 OR 诱导的电极颗粒生长暴露出低指数晶面(100)和(110),并辅以空位有序的(100)超晶格,从而促进了离子迁移。我们的设计极大地稳定了电极-电解质界面,实现了一百万次循环寿命和 91.6% 的容量保持率,而完整电池在 3000 次循环后的容量保持率为 91.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dynamic Active Sites in Electrocatalysis Stepwise One-Shot Borylation Reactions for Intersecting DABNA Substructures Exhibiting Bright Yellow‒Green Electroluminescence with EQE Beyond 40% and Mild Roll-Off Chemical Synergic Stabilization of High Br-Content Mixed-Halide Wide-Bandgap Perovskites for Durable Multi-Terminal Tandem Solar Cells with Minimized Pb Leakage Exchange of CO2 with CO as Reactant Switches Selectivity in Photoreduction on Co–ZrO2 from C1–3 Paraffin to Small Olefins Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1