Electrochemical identification and quantification of through-plane proton channels in graphene oxide membranes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-17 DOI:10.1002/anie.202412669
Yiqing Wang, Siegfried Eigler
{"title":"Electrochemical identification and quantification of through-plane proton channels in graphene oxide membranes","authors":"Yiqing Wang, Siegfried Eigler","doi":"10.1002/anie.202412669","DOIUrl":null,"url":null,"abstract":"Stacked graphene oxide (GO) proton membranes are promising candidates for use in energy devices due to their proton conductivity. Identification of through-plane channels in these membranes is critical but challenging due to their anisotropic nature. Here, we present an electrochemical reduction method for identifying and quantifying through-plane proton channels in GO membranes. The simplicity lies in the operando optical observation of the change in contrast as GO is electrochemically reduced. Here, we find three proton-dominated three-phase interfaces, which are critical for the reduction reactions of GO membranes. Based on these findings, a method is proposed to identify and quantify through-plane channels in stacked GO proton membranes using a simple three-electrode device in combination with real-time imaging of the membrane surface.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412669","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stacked graphene oxide (GO) proton membranes are promising candidates for use in energy devices due to their proton conductivity. Identification of through-plane channels in these membranes is critical but challenging due to their anisotropic nature. Here, we present an electrochemical reduction method for identifying and quantifying through-plane proton channels in GO membranes. The simplicity lies in the operando optical observation of the change in contrast as GO is electrochemically reduced. Here, we find three proton-dominated three-phase interfaces, which are critical for the reduction reactions of GO membranes. Based on these findings, a method is proposed to identify and quantify through-plane channels in stacked GO proton membranes using a simple three-electrode device in combination with real-time imaging of the membrane surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化石墨烯膜中通面质子通道的电化学鉴定与量化
堆叠氧化石墨烯(GO)质子膜因其质子传导性而有望用于能源设备。识别这些膜中的通面通道至关重要,但由于其各向异性而具有挑战性。在此,我们提出了一种电化学还原法,用于识别和量化 GO 膜中的通面质子通道。这种方法的简便性在于通过光学操作观察 GO 在电化学还原过程中对比度的变化。在这里,我们发现了三个以质子为主的三相界面,它们对 GO 膜的还原反应至关重要。基于这些发现,我们提出了一种方法,利用简单的三电极装置,结合膜表面的实时成像,来识别和量化堆叠 GO 质子膜中的通面通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dynamic Active Sites in Electrocatalysis Stepwise One-Shot Borylation Reactions for Intersecting DABNA Substructures Exhibiting Bright Yellow‒Green Electroluminescence with EQE Beyond 40% and Mild Roll-Off Chemical Synergic Stabilization of High Br-Content Mixed-Halide Wide-Bandgap Perovskites for Durable Multi-Terminal Tandem Solar Cells with Minimized Pb Leakage Exchange of CO2 with CO as Reactant Switches Selectivity in Photoreduction on Co–ZrO2 from C1–3 Paraffin to Small Olefins Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1