Neuroanatomical changes observed over the course of a human pregnancy

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2024-09-16 DOI:10.1038/s41593-024-01741-0
Laura Pritschet, Caitlin M. Taylor, Daniela Cossio, Joshua Faskowitz, Tyler Santander, Daniel A. Handwerker, Hannah Grotzinger, Evan Layher, Elizabeth R. Chrastil, Emily G. Jacobs
{"title":"Neuroanatomical changes observed over the course of a human pregnancy","authors":"Laura Pritschet, Caitlin M. Taylor, Daniela Cossio, Joshua Faskowitz, Tyler Santander, Daniel A. Handwerker, Hannah Grotzinger, Evan Layher, Elizabeth R. Chrastil, Emily G. Jacobs","doi":"10.1038/s41593-024-01741-0","DOIUrl":null,"url":null,"abstract":"Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain. Neural changes in pregnancy are not well understood. Here Pritschet et al. present an open-access precision brain imaging resource, mapping neuroanatomical change in an individual from preconception through postpartum.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"27 11","pages":"2253-2260"},"PeriodicalIF":21.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01741-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01741-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain. Neural changes in pregnancy are not well understood. Here Pritschet et al. present an open-access precision brain imaging resource, mapping neuroanatomical change in an individual from preconception through postpartum.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人类怀孕期间观察到的神经解剖学变化
每年都有数百万妇女在怀孕期间经历深刻的荷尔蒙和生理变化,但人类对整个妊娠期母体大脑神经变化的研究还不够深入。利用精确成像技术,我们绘制了一个人从怀孕前到产后两年的神经解剖变化图。整个大脑的灰质体积和皮质厚度明显减少,与之形成鲜明对比的是白质微结构完整性、脑室体积和脑脊液的增加,很少有区域在向母亲过渡时没有受到影响。该数据集是整个妊娠期人类大脑的综合地图,为大脑成像界进一步探索和了解孕产妇大脑提供了一个开放访问的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
The cell-type underpinnings of the human functional cortical connectome Tau filaments are tethered within brain extracellular vesicles in Alzheimer’s disease Converging cortical axes A top-down slow breathing circuit that alleviates negative affect in mice A revised view of the role of CaMKII in learning and memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1