{"title":"Micro-Mechanical Analysis for Residual Stresses and Shakedown of Cohesionless-Frictional Particulate Materials Under Moving Surface Loads","authors":"Wei Cai, Ping Xu, Runhua Zhang","doi":"10.1002/nag.3837","DOIUrl":null,"url":null,"abstract":"<p>Residual stresses and shakedown have been successfully presented by two-dimensional numerical experiments based on the discrete element method (DEM), wherein a cohesionless-frictional material under moving surface loads was replicated through irregular-shaped particles. With surface loads below the shakedown limit, both permanent deformations and residual stresses cease to accumulate and the numerical structure shakes down after a number of load passes. Corresponding micro-mechanical analyses indicate that strong forces and normal forces make a dominant contribution to residual stresses. Besides, averaged magnitudes of interparticle forces and corresponding total contact numbers initially change with load passes, and their final variation trends will differ as the structure shakes down or not. Furthermore, polar distributions of interparticle forces and contacts have been presented, and variations of their preferential orientations were emphasised. Lastly, the fabric tensor and anisotropy of resultant forces were studied, presenting the anisotropy weakening of macro-stress fields, induced by developments of residual stresses.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 17","pages":"4136-4153"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residual stresses and shakedown have been successfully presented by two-dimensional numerical experiments based on the discrete element method (DEM), wherein a cohesionless-frictional material under moving surface loads was replicated through irregular-shaped particles. With surface loads below the shakedown limit, both permanent deformations and residual stresses cease to accumulate and the numerical structure shakes down after a number of load passes. Corresponding micro-mechanical analyses indicate that strong forces and normal forces make a dominant contribution to residual stresses. Besides, averaged magnitudes of interparticle forces and corresponding total contact numbers initially change with load passes, and their final variation trends will differ as the structure shakes down or not. Furthermore, polar distributions of interparticle forces and contacts have been presented, and variations of their preferential orientations were emphasised. Lastly, the fabric tensor and anisotropy of resultant forces were studied, presenting the anisotropy weakening of macro-stress fields, induced by developments of residual stresses.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.