Cell envelope diversity and evolution across the bacterial tree of life

IF 20.5 1区 生物学 Q1 MICROBIOLOGY Nature Microbiology Pub Date : 2024-09-18 DOI:10.1038/s41564-024-01812-9
Ameena Hashimi, Elitza I. Tocheva
{"title":"Cell envelope diversity and evolution across the bacterial tree of life","authors":"Ameena Hashimi, Elitza I. Tocheva","doi":"10.1038/s41564-024-01812-9","DOIUrl":null,"url":null,"abstract":"The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved. This Review discusses the diversity of cell envelope architectures across major bacterial phyla and highlights conserved features found in diderm lineages.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 10","pages":"2475-2487"},"PeriodicalIF":20.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01812-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved. This Review discusses the diversity of cell envelope architectures across major bacterial phyla and highlights conserved features found in diderm lineages.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌生命树的细胞包膜多样性和进化
细菌细胞膜是一种复杂的多层结构,在所有细菌门中都是相同的。根据细胞周围膜的数量,可将其分为两大类。单核细菌由单层膜包围,而双核细菌细胞则由第二层外膜(OM)包围。细菌领域的古老划分导致了两个主要支系:Gracilicutes(葡萄球菌属),完全由diderm各门组成;Terrabacteria(地球细菌属),包括具有不同细胞膜结构的单膜和diderm物种。最近的结构和系统发育进展提高了我们对整个细菌生命树中细胞包膜的多样性和进化的认识。在此,我们将讨论主要细菌门内细胞包膜的可变性,并重点关注在真核细胞系中发现的保守特征。表征细胞包膜的生物生成机制以及细胞包膜的进化损益,有助于我们深入了解原始细胞和最后的普遍共同祖先,所有生物体都是从它们进化而来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
期刊最新文献
Deep mutation, insertion and deletion scanning across the Enterovirus A proteome reveals constraints shaping viral evolution A year of microbiology Gut physiology and environment explain variations in human gut microbiome composition and metabolism A framework for understanding collective microbiome metabolism Parkinson’s drug starves gut microbes of iron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1