Combinatorial Optimization of Metal‐Insulator‐Insulator‐Metal (MIIM) Diodes With Thickness‐Gradient Films via Spatial Atomic Layer Deposition

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-09-17 DOI:10.1002/aelm.202400093
Abdullah H. Alshehri, Hatameh Asgarimoghaddam, Louis‐Vincent Delumeau, Viet Huong Nguyen, AlRasheed Ali, Mutabe Aljaghtham, Ali Alamry, Dogu Ozyigit, Mustafa Yavuz, Kevin P. Musselman
{"title":"Combinatorial Optimization of Metal‐Insulator‐Insulator‐Metal (MIIM) Diodes With Thickness‐Gradient Films via Spatial Atomic Layer Deposition","authors":"Abdullah H. Alshehri, Hatameh Asgarimoghaddam, Louis‐Vincent Delumeau, Viet Huong Nguyen, AlRasheed Ali, Mutabe Aljaghtham, Ali Alamry, Dogu Ozyigit, Mustafa Yavuz, Kevin P. Musselman","doi":"10.1002/aelm.202400093","DOIUrl":null,"url":null,"abstract":"Metal‐insulator‐insulator‐metal (MIIM) diodes with thickness‐gradient films for the insulator layers are fabricated for the first time. Spatially varying atmospheric‐pressure chemical vapor deposition is used to deposit ZnO and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films with orthogonal gradient directions, producing 414 MIIM diodes with 414 different ZnO/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> film‐thickness combinations on a single substrate for combinatorial and high‐throughput optimization. The nm‐scale ZnO/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films are printed in only 2 min and the entire device fabrication takes 7 h, which is much less than conventional approaches for investigating many insulator‐thickness combinations. Rapid identification of the optimal thickness combination is demonstrated; high‐performance diodes (asymmetry = 227, nonlinearity = 13.1, and responsivity = 12 A/W) are observed when a trap‐assisted tunneling mechanism is dominant for insulator thicknesses of 3.4–4.4 nm (ZnO) and 7.4 nm (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>).","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"33 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400093","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal‐insulator‐insulator‐metal (MIIM) diodes with thickness‐gradient films for the insulator layers are fabricated for the first time. Spatially varying atmospheric‐pressure chemical vapor deposition is used to deposit ZnO and Al2O3 films with orthogonal gradient directions, producing 414 MIIM diodes with 414 different ZnO/Al2O3 film‐thickness combinations on a single substrate for combinatorial and high‐throughput optimization. The nm‐scale ZnO/Al2O3 films are printed in only 2 min and the entire device fabrication takes 7 h, which is much less than conventional approaches for investigating many insulator‐thickness combinations. Rapid identification of the optimal thickness combination is demonstrated; high‐performance diodes (asymmetry = 227, nonlinearity = 13.1, and responsivity = 12 A/W) are observed when a trap‐assisted tunneling mechanism is dominant for insulator thicknesses of 3.4–4.4 nm (ZnO) and 7.4 nm (Al2O3).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过空间原子层沉积实现具有厚度梯度薄膜的金属-绝缘体-绝缘体-金属 (MIIM) 二极管的组合优化
首次制造出绝缘层厚度梯度薄膜的金属-绝缘体-绝缘体-金属(MIIM)二极管。利用空间变化的大气压化学气相沉积法沉积出具有正交梯度方向的氧化锌和氧化铝薄膜,在单一基底上制造出 414 个具有 414 种不同氧化锌/氧化铝薄膜厚度组合的 MIIM 二极管,从而实现了组合和高通量优化。纳米级 ZnO/Al2O3 薄膜的印刷仅需 2 分钟,而整个器件的制造仅需 7 小时,远远少于研究多种绝缘体厚度组合的传统方法。实验证明了最佳厚度组合的快速识别;当阱辅助隧道机制在绝缘体厚度为 3.4-4.4 nm(氧化锌)和 7.4 nm(氧化铝)时占主导地位时,可观察到高性能二极管(不对称 = 227,非线性 = 13.1,响应率 = 12 A/W)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Physical Reservoir Computing Utilizing Ion-Gating Transistors Operating in Electric Double Layer and Redox Mechanisms Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1