Rihui Kang, Jiaxing Wu, Rong Cheng, Meng Li, Luxiao Sang, Hulin Zhang, Shengbo Sang
{"title":"3D bioprinting technology and equipment based on microvalve control","authors":"Rihui Kang, Jiaxing Wu, Rong Cheng, Meng Li, Luxiao Sang, Hulin Zhang, Shengbo Sang","doi":"10.1002/bit.28850","DOIUrl":null,"url":null,"abstract":"<p>3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3768-3781"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28850","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.