Defending against fluorine corrosion: Insights from FeCoNiCrMo high-entropy alloy behavior in hydrofluoric acid solutions

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2024-09-14 DOI:10.1016/j.jmrt.2024.09.097
Zhutao Zhang , Jianlei Zhang , Changsheng Zhai , Fang Xie , Hongqiang Fan , Hongxing Zheng
{"title":"Defending against fluorine corrosion: Insights from FeCoNiCrMo high-entropy alloy behavior in hydrofluoric acid solutions","authors":"Zhutao Zhang ,&nbsp;Jianlei Zhang ,&nbsp;Changsheng Zhai ,&nbsp;Fang Xie ,&nbsp;Hongqiang Fan ,&nbsp;Hongxing Zheng","doi":"10.1016/j.jmrt.2024.09.097","DOIUrl":null,"url":null,"abstract":"<div><p>The surging demand for advanced fluorine corrosion-resistant materials underscores their significance in ensuring operational safety and reliability across various industries. This study investigates the corrosion behavior of the FeCoNiCrMo high-entropy alloy (HEA) <em>via</em> a series of 28-day immersion tests in hydrofluoric acid (HF) solutions. The results demonstrate the FeCoNiCrMo HEA's superior corrosion-resistant performance in HF environments, exhibiting remarkably low corrosion rates of 0.179 mm/y, 0.276 mm/y, and 0.352 mm/y in 20 vol%, 30 vol%, and 40 vol% HF solutions, respectively. Comprehensive phase and microstructural characterizations were conducted on samples exposed to the 40 vol% HF solution to elucidate the corrosion mechanisms. The study revealed that localized pitting corrosion preferentially initiates within the interdendritic regions of the HEA matrix upon HF exposure. During the intermediate stage, micro-galvanic corrosion occurs between the dendritic arms and interdendritic regions, leading to the formation of a uniform and compact corrosion product film on the alloy surface. This film, enriched with Mo, Cr, and O, provides temporary protection. However, as corrosion progresses, the partial detachment of particulate corrosion products compromises the integrity of the film, resulting in increased dissolution within the interdendritic regions and the formation of irregular corrosion grooves in the later stage. These insights significantly enhance the understanding of the corrosion mechanisms of FeCoNiCrMo HEA in HF environments and provide valuable guidance for developing innovative protective materials designed for fluorine-rich engineering applications.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 560-573"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424021021/pdfft?md5=380da516d67dfad02061f999e8907890&pid=1-s2.0-S2238785424021021-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The surging demand for advanced fluorine corrosion-resistant materials underscores their significance in ensuring operational safety and reliability across various industries. This study investigates the corrosion behavior of the FeCoNiCrMo high-entropy alloy (HEA) via a series of 28-day immersion tests in hydrofluoric acid (HF) solutions. The results demonstrate the FeCoNiCrMo HEA's superior corrosion-resistant performance in HF environments, exhibiting remarkably low corrosion rates of 0.179 mm/y, 0.276 mm/y, and 0.352 mm/y in 20 vol%, 30 vol%, and 40 vol% HF solutions, respectively. Comprehensive phase and microstructural characterizations were conducted on samples exposed to the 40 vol% HF solution to elucidate the corrosion mechanisms. The study revealed that localized pitting corrosion preferentially initiates within the interdendritic regions of the HEA matrix upon HF exposure. During the intermediate stage, micro-galvanic corrosion occurs between the dendritic arms and interdendritic regions, leading to the formation of a uniform and compact corrosion product film on the alloy surface. This film, enriched with Mo, Cr, and O, provides temporary protection. However, as corrosion progresses, the partial detachment of particulate corrosion products compromises the integrity of the film, resulting in increased dissolution within the interdendritic regions and the formation of irregular corrosion grooves in the later stage. These insights significantly enhance the understanding of the corrosion mechanisms of FeCoNiCrMo HEA in HF environments and provide valuable guidance for developing innovative protective materials designed for fluorine-rich engineering applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抵御氟腐蚀:氢氟酸溶液中铁钴镍铬钼高熵合金行为的启示
各行各业对先进氟耐腐蚀材料的需求急剧增加,这凸显了这些材料在确保运行安全性和可靠性方面的重要作用。本研究通过一系列在氢氟酸(HF)溶液中浸泡 28 天的测试,研究了铁钴镍铬钼高熵合金(HEA)的腐蚀行为。结果表明,铁钴镍铬钼高熵合金在氢氟酸环境中具有优异的耐腐蚀性能,在 20 vol%、30 vol% 和 40 vol% 的氢氟酸溶液中分别表现出 0.179 mm/y、0.276 mm/y 和 0.352 mm/y 的极低腐蚀速率。对暴露在 40 vol% HF 溶液中的样品进行了全面的相和微结构表征,以阐明腐蚀机理。研究结果表明,在暴露于氢氟酸溶液时,局部点蚀优先在 HEA 基体的树枝间区域开始。在中间阶段,树枝状臂和树枝状间区域之间会发生微电蚀作用,从而在合金表面形成一层均匀致密的腐蚀产物膜。这层富含钼、铬和 O 的薄膜可提供临时保护。然而,随着腐蚀的进行,颗粒状腐蚀产物的部分脱落破坏了膜的完整性,导致树枝状区域内的溶解增加,并在后期形成不规则的腐蚀沟槽。这些见解大大加深了人们对高频环境下铁钴镍铬钼 HEA 腐蚀机理的理解,并为开发针对富氟工程应用的创新保护材料提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Investigation of the impact of process parameters and thermal treatments on mechanical properties and microstructure of ScanCromAl ® manufactured via powder bed fusion laser beam process A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track Additively manufactured FeCoNiSi0.2 alloy with excellent soft magnetic and mechanical properties through texture engineering Experimental study on the ballistic performance of CFRP/AFB sandwich plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1