A study on anisotropic hardening of 7075 aluminum alloy based on non-associated flow rules

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2024-09-13 DOI:10.1016/j.jmrt.2024.09.084
{"title":"A study on anisotropic hardening of 7075 aluminum alloy based on non-associated flow rules","authors":"","doi":"10.1016/j.jmrt.2024.09.084","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate description of anisotropic plastic deformation is key to accurately predicting the stamping forming of metal sheets. The anisotropic yield criterion, when based on the assumption of isotropic hardening, often leads to significant inaccuracies. To address this issue, this paper observes the anisotropic hardening phenomenon through non-associated flow rules and evaluates the anisotropy of 7075-O aluminum alloy. Through a series of tensile tests, we determined the mechanical properties of 7075-O aluminum alloy in three distinct orientations. To describe the metal hardening behavior, we employed the Swift-Voce hardening criterion. From the hardening curves in three different directions, it was found that AA7075-O exhibits plastic anisotropy. Based on the VUMAT subroutine, finite element simulation of AA7075-O tensile tests was conducted through Abaqus. Compared with the Hill48 model, it was found that the simulated values of the S–Y2009 anisotropic hardening model have a higher degree of agreement with the experimental curves. The S–Y2009 anisotropic hardening model was adopted to predict the earing behavior of AA7075-O during circular cup deep drawing. The root mean square error between the predicted values of the S–Y2009 model and the experimental values was only 0.1795, which is far smaller than that of the Hill48 yield model. Therefore, the SY2009 model has important guiding significance for the stamping forming of metal sheets.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020891/pdfft?md5=475a890f75933e6b950c1cc989322a22&pid=1-s2.0-S2238785424020891-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020891","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate description of anisotropic plastic deformation is key to accurately predicting the stamping forming of metal sheets. The anisotropic yield criterion, when based on the assumption of isotropic hardening, often leads to significant inaccuracies. To address this issue, this paper observes the anisotropic hardening phenomenon through non-associated flow rules and evaluates the anisotropy of 7075-O aluminum alloy. Through a series of tensile tests, we determined the mechanical properties of 7075-O aluminum alloy in three distinct orientations. To describe the metal hardening behavior, we employed the Swift-Voce hardening criterion. From the hardening curves in three different directions, it was found that AA7075-O exhibits plastic anisotropy. Based on the VUMAT subroutine, finite element simulation of AA7075-O tensile tests was conducted through Abaqus. Compared with the Hill48 model, it was found that the simulated values of the S–Y2009 anisotropic hardening model have a higher degree of agreement with the experimental curves. The S–Y2009 anisotropic hardening model was adopted to predict the earing behavior of AA7075-O during circular cup deep drawing. The root mean square error between the predicted values of the S–Y2009 model and the experimental values was only 0.1795, which is far smaller than that of the Hill48 yield model. Therefore, the SY2009 model has important guiding significance for the stamping forming of metal sheets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非关联流动规则的 7075 铝合金各向异性硬化研究
准确描述各向异性塑性变形是准确预测金属板冲压成形的关键。各向异性屈服准则如果基于各向同性硬化的假设,往往会导致严重的误差。针对这一问题,本文通过非关联流动规则观察各向异性硬化现象,并评估 7075-O 铝合金的各向异性。通过一系列拉伸试验,我们测定了 7075-O 铝合金在三个不同方向上的机械性能。为了描述金属硬化行为,我们采用了斯威夫特-沃斯硬化准则。从三个不同方向的硬化曲线可以发现,AA7075-O 具有塑性各向异性。基于 VUMAT 子程序,我们通过 Abaqus 对 AA7075-O 拉伸试验进行了有限元模拟。结果发现,与 Hill48 模型相比,S-Y2009 各向异性硬化模型的模拟值与实验曲线的吻合度更高。采用 S-Y2009 各向异性硬化模型预测 AA7075-O 在圆杯深拉过程中的耳化行为。S-Y2009 模型的预测值与实验值的均方根误差仅为 0.1795,远小于 Hill48 屈服模型。因此,SY2009 模型对金属板材的冲压成形具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Investigation of the impact of process parameters and thermal treatments on mechanical properties and microstructure of ScanCromAl ® manufactured via powder bed fusion laser beam process A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track Additively manufactured FeCoNiSi0.2 alloy with excellent soft magnetic and mechanical properties through texture engineering Experimental study on the ballistic performance of CFRP/AFB sandwich plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1