Ying Zhou , Weidi He , Jiling Song , Dinghong Xu , Hongmin Wu , Jianbing Guo
{"title":"Flammability and thermal analysis of vertically oriented polyvinyl alcohol/DOPO derivative/MXene composite aerogel","authors":"Ying Zhou , Weidi He , Jiling Song , Dinghong Xu , Hongmin Wu , Jianbing Guo","doi":"10.1016/j.polymdegradstab.2024.111006","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of ultralight high-performance flame-retardant composites significantly reduces fire risk for buildings. Flame retardation of porous polyvinyl alcohol (PVA) aerogels with directional arrangement is difficult. Herein, the polyvinyl alcohol/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/two-dimensional (2D) MXene (PVA/DiDOPO/MXene) composite aerogel was prepared by ice template one-way freezing process. PVA-DiDOPO4 composite aerogel with an oriented porous structure reaches the V-1 level at the UL-94 test. Moreover, the peak heat release rate (pHRR) value of PVA-DiDOPO4 reduces to 452.26 (W/g) from 482.88 (W/g) of pure PVA. In addition, PVA/DiDOPO/MXene composite aerogel has improved thermal decomposition properties such as the maximum decomposition temperature (T<sub>max1</sub>) of the PVA-DiDOPO4 sample attains 319.92 °C from pure PVA of 302.90 °C. The design strategy of PVA combined 2D MXene nanosheet and DOPO derivatives construct oriented porous composite aerogel paves the way for the fabrication and customization of ultralight flame-retardant polymer composites, which can be expected to be applied in construction and reduce fire risk.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111006"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003501","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of ultralight high-performance flame-retardant composites significantly reduces fire risk for buildings. Flame retardation of porous polyvinyl alcohol (PVA) aerogels with directional arrangement is difficult. Herein, the polyvinyl alcohol/ 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative/two-dimensional (2D) MXene (PVA/DiDOPO/MXene) composite aerogel was prepared by ice template one-way freezing process. PVA-DiDOPO4 composite aerogel with an oriented porous structure reaches the V-1 level at the UL-94 test. Moreover, the peak heat release rate (pHRR) value of PVA-DiDOPO4 reduces to 452.26 (W/g) from 482.88 (W/g) of pure PVA. In addition, PVA/DiDOPO/MXene composite aerogel has improved thermal decomposition properties such as the maximum decomposition temperature (Tmax1) of the PVA-DiDOPO4 sample attains 319.92 °C from pure PVA of 302.90 °C. The design strategy of PVA combined 2D MXene nanosheet and DOPO derivatives construct oriented porous composite aerogel paves the way for the fabrication and customization of ultralight flame-retardant polymer composites, which can be expected to be applied in construction and reduce fire risk.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.