Influence of surface chemical modifications on enhancing the aging behavior of capacitor biaxially-oriented polypropylene thin film

IF 6.3 2区 化学 Q1 POLYMER SCIENCE Polymer Degradation and Stability Pub Date : 2024-11-26 DOI:10.1016/j.polymdegradstab.2024.111105
Haider M. Umran , Hasan F. Alesary , Hani K. Ismail , Feipeng Wang , Stephen Barton
{"title":"Influence of surface chemical modifications on enhancing the aging behavior of capacitor biaxially-oriented polypropylene thin film","authors":"Haider M. Umran ,&nbsp;Hasan F. Alesary ,&nbsp;Hani K. Ismail ,&nbsp;Feipeng Wang ,&nbsp;Stephen Barton","doi":"10.1016/j.polymdegradstab.2024.111105","DOIUrl":null,"url":null,"abstract":"<div><div>Modern power electronic systems require appropriate metallized polypropylene capacitors (MPCs) to operate in harsh environments. Due to their limited operating capabilities, commercial biaxially-oriented polypropylene (BOPP) films—the primary component of MPCs—are susceptible to degradation in high electric fields and at high temperatures. In order to enhance the aging behavior of BOPP, this work proposes one-sided phosphorylation at optimum and excessive acid concentrations of 8 % and 15 % for 24 hours at a [high] temperature of 60 °C. The proposed surface modifications' success in enhancing the aging behaviors of BOPP is confirmed by DC electrothermal aging. Field emission scanning electron microscopy (FE-SEM) analysis reveals changes in surface morphology resulting from phosphorylation. The changes in crystal structure of the original and phosphorylated samples are evaluated using X-ray diffraction (XRD). The average crystallite size, dislocation density, and microstrain during aging are also characterized using the Williamson-Hall (W-H) analysis method. Fourier transform infrared (FTIR) spectroscopy is used to identify changes in the chemical composition and functional groups resulting from phosphorylation and aging, while X-ray photoelectron spectroscopy (XPS) is used to analyze changes in the surface chemical elements of the original, phosphorylated, and aged samples. The charge-thermally stimulated discharge (C-TSD) technique and broadband dielectric spectroscopy (BDS) are used to verify the electrical performance. Mechanical properties, including thermal stability, are measured using the dynamic mechanical analysis (DMA) technique. The results indicated that the optimized phosphorylation improved the BOPP film's electrical and mechanical properties. As a result, the surface charge stability was found to increase under thermally stimulated discharge by 74 % and the dielectric constant by 2 %, while the dielectric losses decreased by 20.2 %. Under aging, for the first time, the dielectric constant was found to increase by 4.8 %, while dielectric losses decreased by 8.9 %. In return, deformation resistance, ductility, and lower energy dissipation demonstrated enhanced mechanical performance.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"231 ","pages":"Article 111105"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024004488","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern power electronic systems require appropriate metallized polypropylene capacitors (MPCs) to operate in harsh environments. Due to their limited operating capabilities, commercial biaxially-oriented polypropylene (BOPP) films—the primary component of MPCs—are susceptible to degradation in high electric fields and at high temperatures. In order to enhance the aging behavior of BOPP, this work proposes one-sided phosphorylation at optimum and excessive acid concentrations of 8 % and 15 % for 24 hours at a [high] temperature of 60 °C. The proposed surface modifications' success in enhancing the aging behaviors of BOPP is confirmed by DC electrothermal aging. Field emission scanning electron microscopy (FE-SEM) analysis reveals changes in surface morphology resulting from phosphorylation. The changes in crystal structure of the original and phosphorylated samples are evaluated using X-ray diffraction (XRD). The average crystallite size, dislocation density, and microstrain during aging are also characterized using the Williamson-Hall (W-H) analysis method. Fourier transform infrared (FTIR) spectroscopy is used to identify changes in the chemical composition and functional groups resulting from phosphorylation and aging, while X-ray photoelectron spectroscopy (XPS) is used to analyze changes in the surface chemical elements of the original, phosphorylated, and aged samples. The charge-thermally stimulated discharge (C-TSD) technique and broadband dielectric spectroscopy (BDS) are used to verify the electrical performance. Mechanical properties, including thermal stability, are measured using the dynamic mechanical analysis (DMA) technique. The results indicated that the optimized phosphorylation improved the BOPP film's electrical and mechanical properties. As a result, the surface charge stability was found to increase under thermally stimulated discharge by 74 % and the dielectric constant by 2 %, while the dielectric losses decreased by 20.2 %. Under aging, for the first time, the dielectric constant was found to increase by 4.8 %, while dielectric losses decreased by 8.9 %. In return, deformation resistance, ductility, and lower energy dissipation demonstrated enhanced mechanical performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
期刊最新文献
Influence of surface chemical modifications on enhancing the aging behavior of capacitor biaxially-oriented polypropylene thin film Efficient degradation and recycling of carbon fiber reinforced epoxy composite wastes under mild conditions by constructing dual dynamic covalent networks Mechanoluminescence driven by oxidation reactions in epoxy resins Polymer-based phosphoramidite flame retardant for TPU: Enhanced fire resistance with preserved transparency and mechanical properties Innovative development of green nitrogen-phosphorus-based flame retardant for enhancing fire safety of cotton fabrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1