{"title":"Analysis of operation regulation on delay time in long-distance heating pipe systems for practical engineering","authors":"","doi":"10.1016/j.segan.2024.101526","DOIUrl":null,"url":null,"abstract":"<div><p>The distribution area of the district heating network (DHN) is extensive, and there are inherent time delays and thermal losses in the process of heat transfer through heating pipes. The delay in heat transfer within long-distance heating pipes may result in inadequate heat supply to end-users or excessive energy consumption at the heat source. Therefore, this paper presents a quasi-dynamic model for calculating the transmission delay time in the long-distance heating pipeline. And the model is validated through the measured values obtained from a heating pipeline. The influencing factors of delay time are further discussed, including operating parameters, pipe structure parameters and thermal insulator thickness. Additionally, the impact of pipe delay time in practical engineering is analyzed. In practical engineering, the transmission delay time varies when the pipe structural or operational parameters differ, even under the same outdoor temperature change. The change in inlet water temperature and mass flow rate can impact the change rate of outlet water temperature, thereby influencing the delay time. Furthermore, the delay time exhibited an increase with pipe length, diameter, and thermal insulator thickness; however, the effect of thermal insulator thickness on it was minimal. When the inlet water temperature rose or dropped by 5℃, the delay time grew by more 70 % per 1 km pipe length, about 40 % per 100 mm diameter and less 2 % per 100 mm thermal insulator thickness, respectively.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002558","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution area of the district heating network (DHN) is extensive, and there are inherent time delays and thermal losses in the process of heat transfer through heating pipes. The delay in heat transfer within long-distance heating pipes may result in inadequate heat supply to end-users or excessive energy consumption at the heat source. Therefore, this paper presents a quasi-dynamic model for calculating the transmission delay time in the long-distance heating pipeline. And the model is validated through the measured values obtained from a heating pipeline. The influencing factors of delay time are further discussed, including operating parameters, pipe structure parameters and thermal insulator thickness. Additionally, the impact of pipe delay time in practical engineering is analyzed. In practical engineering, the transmission delay time varies when the pipe structural or operational parameters differ, even under the same outdoor temperature change. The change in inlet water temperature and mass flow rate can impact the change rate of outlet water temperature, thereby influencing the delay time. Furthermore, the delay time exhibited an increase with pipe length, diameter, and thermal insulator thickness; however, the effect of thermal insulator thickness on it was minimal. When the inlet water temperature rose or dropped by 5℃, the delay time grew by more 70 % per 1 km pipe length, about 40 % per 100 mm diameter and less 2 % per 100 mm thermal insulator thickness, respectively.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.