A fast Lanczos-based hierarchical algorithm for tensor ring decomposition

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-09-11 DOI:10.1016/j.sigpro.2024.109705
Cheng-Wei Sun , Ting-Zhu Huang , Hong-Xia Dou , Ting Xu , Liang-Jian Deng
{"title":"A fast Lanczos-based hierarchical algorithm for tensor ring decomposition","authors":"Cheng-Wei Sun ,&nbsp;Ting-Zhu Huang ,&nbsp;Hong-Xia Dou ,&nbsp;Ting Xu ,&nbsp;Liang-Jian Deng","doi":"10.1016/j.sigpro.2024.109705","DOIUrl":null,"url":null,"abstract":"<div><p>Tensor ring (TR) decomposition has made remarkable achievements in numerous high-order data processing tasks. However, the current alternating least squares (ALS)- and singular value decomposition (SVD)-based algorithms for TR decomposition, i.e., TR-ALS and TR-SVD, especially the former, are computationally expensive, making them unfriendly for large-scale data processing. This paper adopts three strategies to propose a novel fast TR decomposition algorithm: (1) Use a more efficient Lanczos bidiagonalization algorithm than SVD to generate the TR core tensors. (2) Exploit the hierarchical strategy to generate the TR core tensors in parallel. (3) Employ new reshaping and unfolding operations to reduce the dimensionality of the data used to generate TR core tensors. By incorporating these three strategies, we propose the TR-HLanczos algorithm for fast TR decomposition. This algorithm seamlessly produces the TR core tensors through the Lanczos bidiagonalization algorithm in a hierarchical manner. The effectiveness of the proposed TR-HLanczos algorithm is demonstrated through experimental results on both highly oscillatory functions and real-world datasets. For instance, when dealing with data of size <span><math><mrow><mn>5</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, TR-HLanczos is nearly 561 times and 18 times faster than algorithms based on ALS and SVD, respectively.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109705"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor ring (TR) decomposition has made remarkable achievements in numerous high-order data processing tasks. However, the current alternating least squares (ALS)- and singular value decomposition (SVD)-based algorithms for TR decomposition, i.e., TR-ALS and TR-SVD, especially the former, are computationally expensive, making them unfriendly for large-scale data processing. This paper adopts three strategies to propose a novel fast TR decomposition algorithm: (1) Use a more efficient Lanczos bidiagonalization algorithm than SVD to generate the TR core tensors. (2) Exploit the hierarchical strategy to generate the TR core tensors in parallel. (3) Employ new reshaping and unfolding operations to reduce the dimensionality of the data used to generate TR core tensors. By incorporating these three strategies, we propose the TR-HLanczos algorithm for fast TR decomposition. This algorithm seamlessly produces the TR core tensors through the Lanczos bidiagonalization algorithm in a hierarchical manner. The effectiveness of the proposed TR-HLanczos algorithm is demonstrated through experimental results on both highly oscillatory functions and real-world datasets. For instance, when dealing with data of size 505, TR-HLanczos is nearly 561 times and 18 times faster than algorithms based on ALS and SVD, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 Lanczos 的张量环分解分层快速算法
张量环(TR)分解在众多高阶数据处理任务中取得了显著成就。然而,目前基于交变最小二乘(ALS)和奇异值分解(SVD)的 TR 分解算法,即 TR-ALS 和 TR-SVD,尤其是前者计算成本高,不适合大规模数据处理。本文采用三种策略提出了一种新型快速 TR 分解算法:(1) 使用比 SVD 更高效的 Lanczos 对角算法生成 TR 核心张量。(2) 利用分层策略并行生成 TR 核心张量。(3) 采用新的重塑和展开操作来降低用于生成 TR 核心张量的数据维度。通过整合这三种策略,我们提出了用于快速 TR 分解的 TR-HLanczos 算法。该算法通过 Lanczos 对角线算法分层无缝生成 TR 核心张量。通过对高振荡函数和实际数据集的实验结果,证明了所提出的 TR-HLanczos 算法的有效性。例如,在处理大小为 505 的数据时,TR-HLanczos 比基于 ALS 和 SVD 的算法分别快近 561 倍和 18 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1