Design and structuring of porous sorbents for CO2 capture and separation

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Current Opinion in Green and Sustainable Chemistry Pub Date : 2024-08-28 DOI:10.1016/j.cogsc.2024.100966
Farid Akhtar , Andreas Kaiser
{"title":"Design and structuring of porous sorbents for CO2 capture and separation","authors":"Farid Akhtar ,&nbsp;Andreas Kaiser","doi":"10.1016/j.cogsc.2024.100966","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> capture and conversion using structured porous sorbents and catalysts is a solution to help the decarbonization of emission-intensive industries. Furthermore, porous sorbents have recently been considered for direct air capture to achieve negative CO<sub>2</sub> emissions. Several new prototypes and swing adsorption technologies for CO<sub>2</sub> capture use structured laminates and honeycomb sorbents to lower the energy penalty and improve process efficiency and kinetics. The challenges lie in tailoring and optimizing structured sorbents for their CO<sub>2</sub> working capacity, selectivity over other components, the effect of impurities and humidity, mass and heat transfer kinetics, and mechanical and chemical durability, which are specific to the exhaust system and flue gas composition. Recent developments in the structuring of sorbents are reviewed with a focus on the scalable approaches to improve the performance of postcombustion CO<sub>2</sub> capture and direct air capture processes.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"50 ","pages":"Article 100966"},"PeriodicalIF":9.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000877/pdfft?md5=b16a66196b4f278f0625a79d07eb5076&pid=1-s2.0-S2452223624000877-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 capture and conversion using structured porous sorbents and catalysts is a solution to help the decarbonization of emission-intensive industries. Furthermore, porous sorbents have recently been considered for direct air capture to achieve negative CO2 emissions. Several new prototypes and swing adsorption technologies for CO2 capture use structured laminates and honeycomb sorbents to lower the energy penalty and improve process efficiency and kinetics. The challenges lie in tailoring and optimizing structured sorbents for their CO2 working capacity, selectivity over other components, the effect of impurities and humidity, mass and heat transfer kinetics, and mechanical and chemical durability, which are specific to the exhaust system and flue gas composition. Recent developments in the structuring of sorbents are reviewed with a focus on the scalable approaches to improve the performance of postcombustion CO2 capture and direct air capture processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二氧化碳捕获和分离的多孔吸附剂的设计和构造
利用结构化多孔吸附剂和催化剂进行二氧化碳捕集和转化是帮助排放密集型工业实现脱碳的一种解决方案。此外,多孔吸附剂最近也被考虑用于直接空气捕集,以实现二氧化碳负排放。一些用于二氧化碳捕集的新原型和摇摆吸附技术使用了结构化层压板和蜂窝状吸附剂,以降低能量损耗,提高工艺效率和动力学性能。所面临的挑战在于定制和优化结构吸附剂,使其具有二氧化碳工作能力、对其他成分的选择性、杂质和湿度的影响、传质和传热动力学以及机械和化学耐久性,这些都是排气系统和烟气成分所特有的。本文回顾了吸附剂结构化的最新发展,重点介绍了提高燃烧后二氧化碳捕集和直接空气捕集过程性能的可扩展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
期刊最新文献
Plasma treating water for nitrate based nitrogen fertilizer - A review of recent device designs Atmospheric-pressure plasmas for NOx production: Short review on current status The Chemical sector in transition: Technological developments and green skills towards circularity and decarbonisation Life cycle sustainability assessment for sustainable energy future: A short review on opportunity and challenge Plasma-based conversion of methane into hydrogen and carbon black
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1