Multi-stream FPV-LES modeling of ammonia/coal co-firing on a semi-industrial scale complex burner with pre-heated secondary, tertiary, and staged combustion air
{"title":"Multi-stream FPV-LES modeling of ammonia/coal co-firing on a semi-industrial scale complex burner with pre-heated secondary, tertiary, and staged combustion air","authors":"Sujeet Yadav , Panlong Yu , Kenji Tanno , Hiroaki Watanabe","doi":"10.1016/j.combustflame.2024.113729","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigates ammonia/coal co-firing using a non-adiabatic multi-stream flamelet/progress variable (FPV) approach on a 760 kWth semi-industrial test furnace of Central Research Institute of Electric Power Industry (CRIEPI). The furnace features an advanced low NO<sub>x</sub> CI-α burner with preheated secondary, tertiary, and staged combustion air streams, closely resembling conditions in commercial-scale power plant burners. Two ammonia injection cases are investigated, one where ammonia is injected through the burner and the other where it is injected through a measurement port positioned 1.0 m downstream, both at a fixed ammonia co-firing ratio of 20 % based on LHV. To address varying oxidizer stream temperatures for primary, secondary, tertiary, and staged air streams, an additional dimension is introduced to the flamelet chemtable. The thermochemical space has seven dimensions, three for fuel mixture fractions (volatile matter, char off-gases, and ammonia), and dimensions for the mixture fraction variance, reaction progress variable, total enthalpy, and oxidizer temperature. The seven-dimensional non-adiabatic (7D-NA) FPV-LES model's accuracy is assessed by comparing its predictions with measured data as well as with previous modelling results that had certain limitations, such as six- dimensional non-adiabatic (6D-NA) FPV-LES model that ignored difference in oxidizer temperature and five-dimensional adiabatic (5D-AD) FPV-LES model that ignored both difference in oxidizer temperature and heat loss in flamelet chemtable. In both cases of ammonia injection, 7D NA-FPV-LES model improved over previous model's predictions by accurately capturing the burner exit flow field. It successfully identified trend between the two cases, predicting a slightly higher peak temperature near burner exit in case injecting ammonia through downstream due to development of stronger internal recirculation zone. Results showed peak NO notably higher and closer to burner when ammonia injected through downstream, consistent with measured data due to prevalence of NO reduction for ammonia injected through burner in proximity of burner.</p></div><div><h3>Novelty and significance statement</h3><p>The novelty of this research is that it introduces an approach that can be accurately applied to the FPV-LES modeling of actual commercial power plant burners with highly complex oxidizer streams at varying temperatures. This approach has been validated on the complex CI-α burner of the CRIEPI test furnace of semi-industrial scale, which has preheated secondary, tertiary, and staged air streams, resembling actual conditions encountered in commercial power plant burners. The proposed approach can consider multiple oxidizer streams and it can also consider variation in oxidizer composition (although oxidizer composition is fixed in this study). This research will be significant in adoption of multi-mixture fraction FPV-LES approach to complex burners of commercial power plants. Additionally, the study provides valuable insights into ammonia/coal co-firing in a semi-industrial scale furnace with complex burner, aligning with global decarbonization goals, emphasizing the utilization of zero-carbon fuels like ammonia in actual scale commercial power plants.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113729"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024004383/pdfft?md5=cbca95d18d8949a32685220bdf17434d&pid=1-s2.0-S0010218024004383-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004383","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigates ammonia/coal co-firing using a non-adiabatic multi-stream flamelet/progress variable (FPV) approach on a 760 kWth semi-industrial test furnace of Central Research Institute of Electric Power Industry (CRIEPI). The furnace features an advanced low NOx CI-α burner with preheated secondary, tertiary, and staged combustion air streams, closely resembling conditions in commercial-scale power plant burners. Two ammonia injection cases are investigated, one where ammonia is injected through the burner and the other where it is injected through a measurement port positioned 1.0 m downstream, both at a fixed ammonia co-firing ratio of 20 % based on LHV. To address varying oxidizer stream temperatures for primary, secondary, tertiary, and staged air streams, an additional dimension is introduced to the flamelet chemtable. The thermochemical space has seven dimensions, three for fuel mixture fractions (volatile matter, char off-gases, and ammonia), and dimensions for the mixture fraction variance, reaction progress variable, total enthalpy, and oxidizer temperature. The seven-dimensional non-adiabatic (7D-NA) FPV-LES model's accuracy is assessed by comparing its predictions with measured data as well as with previous modelling results that had certain limitations, such as six- dimensional non-adiabatic (6D-NA) FPV-LES model that ignored difference in oxidizer temperature and five-dimensional adiabatic (5D-AD) FPV-LES model that ignored both difference in oxidizer temperature and heat loss in flamelet chemtable. In both cases of ammonia injection, 7D NA-FPV-LES model improved over previous model's predictions by accurately capturing the burner exit flow field. It successfully identified trend between the two cases, predicting a slightly higher peak temperature near burner exit in case injecting ammonia through downstream due to development of stronger internal recirculation zone. Results showed peak NO notably higher and closer to burner when ammonia injected through downstream, consistent with measured data due to prevalence of NO reduction for ammonia injected through burner in proximity of burner.
Novelty and significance statement
The novelty of this research is that it introduces an approach that can be accurately applied to the FPV-LES modeling of actual commercial power plant burners with highly complex oxidizer streams at varying temperatures. This approach has been validated on the complex CI-α burner of the CRIEPI test furnace of semi-industrial scale, which has preheated secondary, tertiary, and staged air streams, resembling actual conditions encountered in commercial power plant burners. The proposed approach can consider multiple oxidizer streams and it can also consider variation in oxidizer composition (although oxidizer composition is fixed in this study). This research will be significant in adoption of multi-mixture fraction FPV-LES approach to complex burners of commercial power plants. Additionally, the study provides valuable insights into ammonia/coal co-firing in a semi-industrial scale furnace with complex burner, aligning with global decarbonization goals, emphasizing the utilization of zero-carbon fuels like ammonia in actual scale commercial power plants.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.