Whitney M. Woelmer , R. Quinn Thomas , Freya Olsson , Bethel G. Steele , Kathleen C. Weathers , Cayelan C. Carey
{"title":"Process-based forecasts of lake water temperature and dissolved oxygen outperform null models, with variability over time and depth","authors":"Whitney M. Woelmer , R. Quinn Thomas , Freya Olsson , Bethel G. Steele , Kathleen C. Weathers , Cayelan C. Carey","doi":"10.1016/j.ecoinf.2024.102825","DOIUrl":null,"url":null,"abstract":"<div><p>Near-term iterative ecological forecasting has great potential for providing new insights into our ability to predict multiple ecological variables. However, true, out-of-sample probabilistic forecasts remain rare, and variability in forecast performance has largely been unexamined in process-based forecasts which predict multiple ecosystem variables. To explore how forecast performance varies for water temperature and dissolved oxygen, two freshwater variables important for lake ecosystem functioning, we produced probabilistic forecasts at multiple depths over two open-water seasons in Lake Sunapee, NH, USA. Our forecasting system, FLARE (Forecasting Lake And Reservoir Ecosystems), uses a 1-D coupled hydrodynamic-biogeochemical process model, which we assessed relative to both climatology and persistence null models to quantify how much information process-based FLARE forecasts provide over null models across varying environmental conditions. We found that FLARE water temperature forecasts were always more skillful than FLARE oxygen forecasts. Specifically, temperature forecasts outperformed both null models up to 11 days into the future, as compared to only two days for oxygen. Across different years, we observed variable forecast skill, with performance generally decreasing with depth for both variables. Overall, all temperature forecasts and surface oxygen, but not deep oxygen, forecasts were more skillful than at least one null model >80 % of the forecasted period, indicating that our process-based model was able to reproduce the dynamics of these two variables with greater reliability than the null models. However, process-based oxygen forecasts from deeper waters were less skillful than both null models during a majority of the forecasted period, which suggests that deep-water oxygen dynamics are dominated by autocorrelation and seasonal change, which are inherently captured by the null forecasts. Our results highlight that forecast performance varies among lake water quality metrics and that process-based forecasts can provide important information in conjunction with null models in varying environmental conditions. Altogether, these process-based forecasts can be used to develop quantitative tools which inform our understanding of future ecosystem change.</p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003674/pdfft?md5=9a53fafcb216d3f908b82767ac100cd5&pid=1-s2.0-S1574954124003674-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003674","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Near-term iterative ecological forecasting has great potential for providing new insights into our ability to predict multiple ecological variables. However, true, out-of-sample probabilistic forecasts remain rare, and variability in forecast performance has largely been unexamined in process-based forecasts which predict multiple ecosystem variables. To explore how forecast performance varies for water temperature and dissolved oxygen, two freshwater variables important for lake ecosystem functioning, we produced probabilistic forecasts at multiple depths over two open-water seasons in Lake Sunapee, NH, USA. Our forecasting system, FLARE (Forecasting Lake And Reservoir Ecosystems), uses a 1-D coupled hydrodynamic-biogeochemical process model, which we assessed relative to both climatology and persistence null models to quantify how much information process-based FLARE forecasts provide over null models across varying environmental conditions. We found that FLARE water temperature forecasts were always more skillful than FLARE oxygen forecasts. Specifically, temperature forecasts outperformed both null models up to 11 days into the future, as compared to only two days for oxygen. Across different years, we observed variable forecast skill, with performance generally decreasing with depth for both variables. Overall, all temperature forecasts and surface oxygen, but not deep oxygen, forecasts were more skillful than at least one null model >80 % of the forecasted period, indicating that our process-based model was able to reproduce the dynamics of these two variables with greater reliability than the null models. However, process-based oxygen forecasts from deeper waters were less skillful than both null models during a majority of the forecasted period, which suggests that deep-water oxygen dynamics are dominated by autocorrelation and seasonal change, which are inherently captured by the null forecasts. Our results highlight that forecast performance varies among lake water quality metrics and that process-based forecasts can provide important information in conjunction with null models in varying environmental conditions. Altogether, these process-based forecasts can be used to develop quantitative tools which inform our understanding of future ecosystem change.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.