A deep learning approach for white blood cells image generation and classification using SRGAN and VGG19

Jannatul Ferdousi, Soyabul Islam Lincoln, Md. Khorshed Alom, Md. Foysal
{"title":"A deep learning approach for white blood cells image generation and classification using SRGAN and VGG19","authors":"Jannatul Ferdousi,&nbsp;Soyabul Islam Lincoln,&nbsp;Md. Khorshed Alom,&nbsp;Md. Foysal","doi":"10.1016/j.teler.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of White Blood Cells (WBCs) is crucial for diagnosing diseases, monitoring treatment effectiveness, and understanding how the immune system functions. In this paper, we propose a deep learning approach to classify WBCs using Super Resolution Generative Adversarial Network (SRGAN) and Visual Geometry Group 19 (VGG19). Firstly, microscopic images of WBCs are generated using the SRGAN to obtain more precise and high-resolution images, which are then classified with a pretrained VGG19 classifier. Low-resolution (LR) images are inputted into the generator of SRGAN, and its discriminator compares the High-resolution (HR) image with LR, generating super-resolution images to minimize misclassification risks. A large dataset of 12,447 images containing four classes of WBCs (Eosinophil, Lymphocyte, Monocyte, and Neutrophil) is utilized to train and validate our proposed model. Following extensive experimental analysis, our proposed model achieves a test accuracy of 94.87 %, surpassing traditional Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Hybrid CNN-RNN models, and other conventional approaches. The generated images of SRGAN overcome challenges associated with misclassification due to the poor resolution of microscopic images, while the use of a pretrained model as a classifier reduces classification complexity. The source code of the entire work is available at https://github.com/Jannatul-Ferdousi/SRGAN_VGG19_WBC.git.</p></div>","PeriodicalId":101213,"journal":{"name":"Telematics and Informatics Reports","volume":"16 ","pages":"Article 100163"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772503024000495/pdfft?md5=0d78e3aeaccad57927f0be4746366c00&pid=1-s2.0-S2772503024000495-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772503024000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classification of White Blood Cells (WBCs) is crucial for diagnosing diseases, monitoring treatment effectiveness, and understanding how the immune system functions. In this paper, we propose a deep learning approach to classify WBCs using Super Resolution Generative Adversarial Network (SRGAN) and Visual Geometry Group 19 (VGG19). Firstly, microscopic images of WBCs are generated using the SRGAN to obtain more precise and high-resolution images, which are then classified with a pretrained VGG19 classifier. Low-resolution (LR) images are inputted into the generator of SRGAN, and its discriminator compares the High-resolution (HR) image with LR, generating super-resolution images to minimize misclassification risks. A large dataset of 12,447 images containing four classes of WBCs (Eosinophil, Lymphocyte, Monocyte, and Neutrophil) is utilized to train and validate our proposed model. Following extensive experimental analysis, our proposed model achieves a test accuracy of 94.87 %, surpassing traditional Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Hybrid CNN-RNN models, and other conventional approaches. The generated images of SRGAN overcome challenges associated with misclassification due to the poor resolution of microscopic images, while the use of a pretrained model as a classifier reduces classification complexity. The source code of the entire work is available at https://github.com/Jannatul-Ferdousi/SRGAN_VGG19_WBC.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SRGAN 和 VGG19 生成和分类白细胞图像的深度学习方法
白细胞(WBC)的分类对于诊断疾病、监测治疗效果和了解免疫系统的功能至关重要。本文提出了一种利用超分辨率生成对抗网络(SRGAN)和视觉几何组 19(VGG19)对白细胞进行分类的深度学习方法。首先,使用 SRGAN 生成白细胞的显微图像,以获得更精确的高分辨率图像,然后使用预训练的 VGG19 分类器对这些图像进行分类。低分辨率(LR)图像被输入到 SRGAN 生成器中,SRGAN 的判别器将高分辨率(HR)图像与 LR 图像进行比较,生成超分辨率图像,从而将误判风险降至最低。为了训练和验证我们提出的模型,我们使用了一个包含 12,447 幅图像的大型数据集,其中包含四类白细胞(嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞)。经过大量实验分析,我们提出的模型达到了 94.87 % 的测试准确率,超过了传统的卷积神经网络(CNN)、循环神经网络(RNN)、混合 CNN-RNN 模型和其他传统方法。SRGAN 生成的图像克服了因显微图像分辨率低而导致的误分类难题,而使用预训练模型作为分类器则降低了分类的复杂性。整个工作的源代码可在 https://github.com/Jannatul-Ferdousi/SRGAN_VGG19_WBC.git 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Research on smart city construction in the context of public culture Multitasking Moose Migration: Examining media multimodality in slow-TV nature programming Factors influencing intentions to use QRIS: A two-staged PLS-SEM and ANN approach Copula entropy regularization transformer with C2 variational autoencoder and fine-tuned hybrid DL model for network intrusion detection Designing mobile-based tele dermatology for Indonesian clinic using user centred design: Quantitative and qualitative approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1