{"title":"Assessment of ply thickness and aluminum foils interleaving on the impact response of CFRP composites designed for cryogenic pressure vessels","authors":"","doi":"10.1016/j.compstruct.2024.118563","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber reinforced polymer (CFRP) proved to be the best choice to produce cryogenic pressure vessels coupling a reduced weight with superior mechanical performance. Despite this, CFRPs are prone to fuel leakage due to interconnected matrix cracks resulting from mechanical and thermal stresses. Two strategies were combined in this work to reduce fuel permeability, i.e., increase of plies number and metallic film interleaving, evaluating the cryogenic impact response of these new configurations. At first, the only ply thickness effect was assessed and the hybrid sandwich-like (SL) configuration with traditional CFRP (RC) skins and a thin-ply (TP) core displayed impact and residual flexural properties close to RC ones. Then, the effect of aluminum foils interleaving was investigated, and the interleaved SL configuration displayed higher residual flexural properties than interleaved RC for all temperatures, e.g., the residual flexural strength was 30.3 % higher at room temperature and 14.6 % higher at −70 °C, respectively.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006913/pdfft?md5=193aa3e07e5ce48605987a80862410bd&pid=1-s2.0-S0263822324006913-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006913","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced polymer (CFRP) proved to be the best choice to produce cryogenic pressure vessels coupling a reduced weight with superior mechanical performance. Despite this, CFRPs are prone to fuel leakage due to interconnected matrix cracks resulting from mechanical and thermal stresses. Two strategies were combined in this work to reduce fuel permeability, i.e., increase of plies number and metallic film interleaving, evaluating the cryogenic impact response of these new configurations. At first, the only ply thickness effect was assessed and the hybrid sandwich-like (SL) configuration with traditional CFRP (RC) skins and a thin-ply (TP) core displayed impact and residual flexural properties close to RC ones. Then, the effect of aluminum foils interleaving was investigated, and the interleaved SL configuration displayed higher residual flexural properties than interleaved RC for all temperatures, e.g., the residual flexural strength was 30.3 % higher at room temperature and 14.6 % higher at −70 °C, respectively.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.