An efficient hierarchical Bayesian framework for multiscale material modeling

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-09-16 DOI:10.1016/j.compstruct.2024.118570
{"title":"An efficient hierarchical Bayesian framework for multiscale material modeling","authors":"","doi":"10.1016/j.compstruct.2024.118570","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006986/pdfft?md5=44a37f0b40d08ee4669a694117ff8f81&pid=1-s2.0-S0263822324006986-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006986","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度材料建模的高效分层贝叶斯框架
本文介绍了一种通过各种实验方案推断多尺度材料系统材料特性的新方法。我们利用分层贝叶斯范式,以系统的方式整合不同长度尺度和/或不同材料成分的多个实验数据。具体来说,我们构建了一个概率模型,该模型采用了过渡马尔可夫链蒙特卡罗方法,从多尺度模型参数和分层超参数的后验分布中提取样本。超参数的后验分布囊括了来自所有不同实验的信息,利用它可以得出一组有依据的物理参数,用于对未来的材料模型进行预测。前馈神经网络在减轻在多尺度非线性计算均质化分析基础上实施分层贝叶斯分析的计算工作量方面发挥着至关重要的作用。其目的是学习并准确模拟多长度尺度的非线性构成规律。通过对碳纳米管(CNT)界面力学行为的研究,在碳纳米管(CNT)增强水泥基材料配置的案例研究中演示了所提出的方法。分层贝叶斯框架适用于一组测量数据,这些数据来自在宏观结构尺度上对不同材料成分进行的独立文献实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Hybrid composite-metal structure response to post-impact compression – Experimental and numerical study Extension of the crack equivalent method applied to mode II fracture of thermoplastic composites bonded joints using the ENF test Comparative analysis of modal, static, and buckling behaviors in thin-walled composite cylinders: A detailed study Crashworthiness assessment of a composite fuselage stanchion employing a strain rate dependent damage model A mean field homogenization model for the mechanical response of ceramic matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1