You Zhang , Yongjiu Cai , Wei Li , Ruijie Shen , Wenming Yan , Zhijun Gong , Kuanyi Li , Ronaldo Sousa
{"title":"Sediment dredging temporarily benefits the recovery of Corbicula fluminea in eutrophic lakes","authors":"You Zhang , Yongjiu Cai , Wei Li , Ruijie Shen , Wenming Yan , Zhijun Gong , Kuanyi Li , Ronaldo Sousa","doi":"10.1016/j.ecoleng.2024.107403","DOIUrl":null,"url":null,"abstract":"<div><p>Sediment dredging is an important countermeasure for remediating eutrophic shallow lakes, which may significantly alter benthic fauna via changing sediment characteristics and bottom dissolved oxygen (DO) conditions. However, current understanding on the effects of sediment dredging on bivalves remains unclear. Here, <em>Corbicula fluminea</em>, a native species in Asia undergoing substantial population declines in shallow lakes in the Yangtze River Basin (China) due to eutrophication, was taken as an example to examine the response of freshwater bivalves to dredging. We hypothesized that (1) in hypoxia conditions, sediment dredging benefits the survival of <em>C. fluminea</em> via coarsening the sediment, which would improve DO conditions at sediment-water interface (SWI); and (2) in habitats with sufficient DO, a mixture of coarse sand and fine sediment simulating sediment conditions after dredging, would increase <em>C. fluminea</em> growth since this species is both filter and deposit feeder. To test the above hypotheses, we conducted an outdoor mesocosm experiment that simulated the living conditions of <em>C. fluminea</em> under different dissolved oxygen and sediment type conditions. In addition, we used a 15-year monitoring program of <em>C. fluminea</em> in Lake Taihu that have been experiencing dredging several times to assess possible changes in population dynamics. We found that coarse sediment benefited <em>C. fluminea</em> via improving DO conditions at SWI, indicating that dredging benefits the survival of <em>C. fluminea</em>, which is consistent with our first hypothesis. In sufficient DO conditions, coarse sediment improved growth of <em>C. fluminea</em>, consistent with our second hypothesis. However, in natural ecosystems the effectiveness of sediment dredging is time-limited. Therefore, our results also suggested that sediment dredging should be taken together with other measures, such as pollution reduction and ecological restoration, to recover <em>C. fluminea</em> populations.</p></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"209 ","pages":"Article 107403"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424002283","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sediment dredging is an important countermeasure for remediating eutrophic shallow lakes, which may significantly alter benthic fauna via changing sediment characteristics and bottom dissolved oxygen (DO) conditions. However, current understanding on the effects of sediment dredging on bivalves remains unclear. Here, Corbicula fluminea, a native species in Asia undergoing substantial population declines in shallow lakes in the Yangtze River Basin (China) due to eutrophication, was taken as an example to examine the response of freshwater bivalves to dredging. We hypothesized that (1) in hypoxia conditions, sediment dredging benefits the survival of C. fluminea via coarsening the sediment, which would improve DO conditions at sediment-water interface (SWI); and (2) in habitats with sufficient DO, a mixture of coarse sand and fine sediment simulating sediment conditions after dredging, would increase C. fluminea growth since this species is both filter and deposit feeder. To test the above hypotheses, we conducted an outdoor mesocosm experiment that simulated the living conditions of C. fluminea under different dissolved oxygen and sediment type conditions. In addition, we used a 15-year monitoring program of C. fluminea in Lake Taihu that have been experiencing dredging several times to assess possible changes in population dynamics. We found that coarse sediment benefited C. fluminea via improving DO conditions at SWI, indicating that dredging benefits the survival of C. fluminea, which is consistent with our first hypothesis. In sufficient DO conditions, coarse sediment improved growth of C. fluminea, consistent with our second hypothesis. However, in natural ecosystems the effectiveness of sediment dredging is time-limited. Therefore, our results also suggested that sediment dredging should be taken together with other measures, such as pollution reduction and ecological restoration, to recover C. fluminea populations.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.