{"title":"AC electric field-induced changes in viscosity of aqueous ceramic suspensions and tuning of freeze-cast microstructure and compressive strength","authors":"","doi":"10.1016/j.mtla.2024.102232","DOIUrl":null,"url":null,"abstract":"<div><p>A systematic parametric study was conducted on alternating current (AC) electric field-assisted freeze-casting to enable a comprehensive understanding of tuning freeze-cast microstructure and compressive strength and provide insights into the role of AC field. A novel finding was that the AC field increased the viscosity of aqueous ceramic suspensions, where the viscosity increase was dependent on the ceramic loading of suspensions, dispersant concentration, and field duration. Viscosity increased with field duration for a fixed solid loading and dispersant concentration. It was suggested that AC field-induced dielectrophoretic (DEP) forces decreased interparticle distances and increased interparticle interactions in ceramic suspensions, hence viscosity. It was revealed that the increase in viscosity of ceramic suspensions due to the AC field could be reversed. It was demonstrated that simple magnetic stirring of the suspensions previously subjected to an AC field (which increased viscosity) reduced viscosity to the level of the as-prepared suspensions. For materials fabrication, an AC electric field was applied to aqueous ceramic suspensions for the desired duration, then turned OFF, followed by freeze-casting, which remarkably influenced freeze-cast sintered microstructure. The impact of the field on microstructure increased with solid loading, dispersant concentration, and field duration, and microstructure changes were associated with viscosity of suspensions prior to freeze-casting. With increasing viscosity, freeze-cast microstructure became increasingly dendritic, i.e., bridge density increased. A positive correlation was observed between bridge density and compressive strength for all the materials. Depending on the solid loading, dispersant concentration, and field duration, about 5- to 8-fold increase in strength was achieved.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A systematic parametric study was conducted on alternating current (AC) electric field-assisted freeze-casting to enable a comprehensive understanding of tuning freeze-cast microstructure and compressive strength and provide insights into the role of AC field. A novel finding was that the AC field increased the viscosity of aqueous ceramic suspensions, where the viscosity increase was dependent on the ceramic loading of suspensions, dispersant concentration, and field duration. Viscosity increased with field duration for a fixed solid loading and dispersant concentration. It was suggested that AC field-induced dielectrophoretic (DEP) forces decreased interparticle distances and increased interparticle interactions in ceramic suspensions, hence viscosity. It was revealed that the increase in viscosity of ceramic suspensions due to the AC field could be reversed. It was demonstrated that simple magnetic stirring of the suspensions previously subjected to an AC field (which increased viscosity) reduced viscosity to the level of the as-prepared suspensions. For materials fabrication, an AC electric field was applied to aqueous ceramic suspensions for the desired duration, then turned OFF, followed by freeze-casting, which remarkably influenced freeze-cast sintered microstructure. The impact of the field on microstructure increased with solid loading, dispersant concentration, and field duration, and microstructure changes were associated with viscosity of suspensions prior to freeze-casting. With increasing viscosity, freeze-cast microstructure became increasingly dendritic, i.e., bridge density increased. A positive correlation was observed between bridge density and compressive strength for all the materials. Depending on the solid loading, dispersant concentration, and field duration, about 5- to 8-fold increase in strength was achieved.