Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-11-23 DOI:10.1016/j.mtla.2024.102294
Meiling Li , Mingwei Hu , Yaning Wang , Yonghui Ma , Yi Yuan , Tahashi Masahiro , Qiang Wang
{"title":"Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field","authors":"Meiling Li ,&nbsp;Mingwei Hu ,&nbsp;Yaning Wang ,&nbsp;Yonghui Ma ,&nbsp;Yi Yuan ,&nbsp;Tahashi Masahiro ,&nbsp;Qiang Wang","doi":"10.1016/j.mtla.2024.102294","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports a significant enhancement of the thermoelectric properties of Bi<sub>2</sub>Te<sub>3</sub>-based materials achieved by modifying their internal microstructure via the high magnetic field-directed solidification method. The magnetic moment generated by the magnetic field leads to an optimal crystal orientation, drastically reducing the resistivity while maintaining the stability of the Seebeck coefficient. Consequently, the power factors of P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and N-type Bi<sub>2</sub>Te<sub>3</sub> samples were improved by 29.2 and 23.2 %, respectively. Furthermore, the thermoelectric magnetic force by the high magnetic field serves to refine the grain size and augment the source of phonon scatting, which effectively reduces the lattice thermal conductivity. Eventually, the <em>zT</em><sub>Max</sub> of the P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> sample reaches 1.12, while that of the N-type Bi<sub>2</sub>Te<sub>3</sub> sample is 0.24, both higher than the value without the high magnetic field.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102294"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports a significant enhancement of the thermoelectric properties of Bi2Te3-based materials achieved by modifying their internal microstructure via the high magnetic field-directed solidification method. The magnetic moment generated by the magnetic field leads to an optimal crystal orientation, drastically reducing the resistivity while maintaining the stability of the Seebeck coefficient. Consequently, the power factors of P-type Bi0.5Sb1.5Te3 and N-type Bi2Te3 samples were improved by 29.2 and 23.2 %, respectively. Furthermore, the thermoelectric magnetic force by the high magnetic field serves to refine the grain size and augment the source of phonon scatting, which effectively reduces the lattice thermal conductivity. Eventually, the zTMax of the P-type Bi0.5Sb1.5Te3 sample reaches 1.12, while that of the N-type Bi2Te3 sample is 0.24, both higher than the value without the high magnetic field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高磁场下定向凝固制备的基于 Bi2Te3 的热电特性
本研究报告通过高磁场定向凝固法改变 Bi2Te3 基材料的内部微结构,显著提高了其热电特性。磁场产生的磁矩导致最佳晶体取向,在保持塞贝克系数稳定性的同时大幅降低了电阻率。因此,P 型 Bi0.5Sb1.5Te3 和 N 型 Bi2Te3 样品的功率因数分别提高了 29.2% 和 23.2%。此外,高磁场产生的热电磁力细化了晶粒尺寸,增强了声子散射源,从而有效降低了晶格热导率。最终,P 型 Bi0.5Sb1.5Te3 样品的 zTMax 达到 1.12,而 N 型 Bi2Te3 样品的 zTMax 为 0.24,均高于未加高磁场时的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
Mechano-chemical competition in driven complex concentrated alloys Nucleation of recrystallization: A new approach to consider the evolution of the substructure in the system Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field Effect of thermal history on performance of bulk metallic glass spacecraft components Multi-phase-field lattice Boltzmann modeling and simulations of semi-solid simple shear deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1