{"title":"Sketch-2-4D: Sketch driven dynamic 3D scene generation","authors":"Guo-Wei Yang, Dong-Yu Chen, Tai-Jiang Mu","doi":"10.1016/j.gmod.2024.101231","DOIUrl":null,"url":null,"abstract":"<div><p>Sketch-based content generation offers flexible controllability, making it a promising narrative avenue in film production. Directors often visualize their imagination by crafting storyboards using sketches and textual descriptions for each shot. However, current video generation methods suffer from three-dimensional inconsistencies, with notably artifacts during large motion or camera pans around scenes. A suitable solution is to directly generate 4D scene, enabling consistent dynamic three-dimensional scenes generation. We define the Sketch-2-4D problem, aiming to enhance controllability and consistency in this context. We propose a novel Control Score Distillation Sampling (SDS-C) for sketch-based 4D scene generation, providing precise control over scene dynamics. We further design Spatial Consistency Modules and Temporal Consistency Modules to tackle the temporal and spatial inconsistencies introduced by sketch-based control, respectively. Extensive experiments have demonstrated the effectiveness of our approach.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"136 ","pages":"Article 101231"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000195/pdfft?md5=12c973a601d5430e660ae4453ec0a4d8&pid=1-s2.0-S1524070324000195-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000195","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sketch-based content generation offers flexible controllability, making it a promising narrative avenue in film production. Directors often visualize their imagination by crafting storyboards using sketches and textual descriptions for each shot. However, current video generation methods suffer from three-dimensional inconsistencies, with notably artifacts during large motion or camera pans around scenes. A suitable solution is to directly generate 4D scene, enabling consistent dynamic three-dimensional scenes generation. We define the Sketch-2-4D problem, aiming to enhance controllability and consistency in this context. We propose a novel Control Score Distillation Sampling (SDS-C) for sketch-based 4D scene generation, providing precise control over scene dynamics. We further design Spatial Consistency Modules and Temporal Consistency Modules to tackle the temporal and spatial inconsistencies introduced by sketch-based control, respectively. Extensive experiments have demonstrated the effectiveness of our approach.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.