Nuo Xu, Xin Zhang, Pu-Can Guo, Dong-Hua Xie, Guo-Ping Sheng
{"title":"Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications","authors":"Nuo Xu, Xin Zhang, Pu-Can Guo, Dong-Hua Xie, Guo-Ping Sheng","doi":"10.1126/sciadv.adp2179","DOIUrl":null,"url":null,"abstract":"<div >Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms’ resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp2179","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp2179","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms’ resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.