Mengfan Zong, Jing Zhang, Wenbing Wu, Ziye Yu, Yi Zhang, Guoxiong Mei
{"title":"Semi-Analytical Solution for One-Dimensional Nonlinear Consolidation of Multilayered Soil Considering Self-Weight and Boundary Time Effect","authors":"Mengfan Zong, Jing Zhang, Wenbing Wu, Ziye Yu, Yi Zhang, Guoxiong Mei","doi":"10.1002/nag.3839","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The self-weight stress in multilayered soil varies with depth, and traditional consolidation research seldom takes into account the actual distribution of self-weight stress, resulting in inaccurate calculations of soil consolidation and settlement. This paper presents a semi-analytical solution for the one-dimensional nonlinear consolidation of multilayered soil, considering self-weight, time-dependent loading, and boundary time effect. The validity of the proposed solution is confirmed through comparison with existing analytical solutions and finite difference solution. Based on the proposed semi-analytical solution, this study investigates the influence of self-weight, interface parameter, soil properties, and nonlinear parameters on the consolidation characteristics of multilayered soil. The results indicate that factoring in the true distribution of self-weight leads to a faster dissipation rate of excess pore water pressure and larger settlement and settlement rate, compared to not considering self-weight. Both boundary drainage performance and soil nonlinearity have an impact on consolidation. If the boundary drainage capacity is inadequate, the influence of soil nonlinearity on consolidation diminishes.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 17","pages":"4232-4243"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3839","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The self-weight stress in multilayered soil varies with depth, and traditional consolidation research seldom takes into account the actual distribution of self-weight stress, resulting in inaccurate calculations of soil consolidation and settlement. This paper presents a semi-analytical solution for the one-dimensional nonlinear consolidation of multilayered soil, considering self-weight, time-dependent loading, and boundary time effect. The validity of the proposed solution is confirmed through comparison with existing analytical solutions and finite difference solution. Based on the proposed semi-analytical solution, this study investigates the influence of self-weight, interface parameter, soil properties, and nonlinear parameters on the consolidation characteristics of multilayered soil. The results indicate that factoring in the true distribution of self-weight leads to a faster dissipation rate of excess pore water pressure and larger settlement and settlement rate, compared to not considering self-weight. Both boundary drainage performance and soil nonlinearity have an impact on consolidation. If the boundary drainage capacity is inadequate, the influence of soil nonlinearity on consolidation diminishes.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.