SIM-OFE: Structure Information Mining and Object-Aware Feature Enhancement for Fine-Grained Visual Categorization

Hongbo Sun;Xiangteng He;Jinglin Xu;Yuxin Peng
{"title":"SIM-OFE: Structure Information Mining and Object-Aware Feature Enhancement for Fine-Grained Visual Categorization","authors":"Hongbo Sun;Xiangteng He;Jinglin Xu;Yuxin Peng","doi":"10.1109/TIP.2024.3459788","DOIUrl":null,"url":null,"abstract":"Fine-grained visual categorization (FGVC) aims to distinguish visual objects from multiple subcategories of the coarse-grained category. Subtle inter-class differences among various subcategories make the FGVC task more challenging. Existing methods primarily focus on learning salient visual patterns while ignoring how to capture the object’s internal structure, causing difficulty in obtaining complete discriminative regions within the object to limit FGVC performance. To address the above issue, we propose a Structure Information Mining and Object-aware Feature Enhancement (SIM-OFE) method for fine-grained visual categorization, which explores the visual object’s internal structure composition and appearance traits. Concretely, we first propose a simple yet effective hybrid perception attention module for locating visual objects based on global-scope and local-scope significance analyses. Then, a structure information mining module is proposed to model the distribution and context relation of critical regions within the object, highlighting the whole object and discriminative regions for distinguishing subtle differences. Finally, an object-aware feature enhancement module is proposed to combine global-scope and local-scope discriminative features in an attentive coupling way for powerful visual representations in fine-grained recognition. Extensive experiments on three FGVC benchmark datasets demonstrate that our proposed SIM-OFE method can achieve state-of-the-art performance.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5312-5326"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684043/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-grained visual categorization (FGVC) aims to distinguish visual objects from multiple subcategories of the coarse-grained category. Subtle inter-class differences among various subcategories make the FGVC task more challenging. Existing methods primarily focus on learning salient visual patterns while ignoring how to capture the object’s internal structure, causing difficulty in obtaining complete discriminative regions within the object to limit FGVC performance. To address the above issue, we propose a Structure Information Mining and Object-aware Feature Enhancement (SIM-OFE) method for fine-grained visual categorization, which explores the visual object’s internal structure composition and appearance traits. Concretely, we first propose a simple yet effective hybrid perception attention module for locating visual objects based on global-scope and local-scope significance analyses. Then, a structure information mining module is proposed to model the distribution and context relation of critical regions within the object, highlighting the whole object and discriminative regions for distinguishing subtle differences. Finally, an object-aware feature enhancement module is proposed to combine global-scope and local-scope discriminative features in an attentive coupling way for powerful visual representations in fine-grained recognition. Extensive experiments on three FGVC benchmark datasets demonstrate that our proposed SIM-OFE method can achieve state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIM-OFE:用于细粒度视觉分类的结构信息挖掘和对象感知特征增强技术
细粒度视觉分类(FGVC)旨在将视觉对象从粗粒度类别的多个子类别中区分出来。不同子类别之间微妙的类间差异使 FGVC 任务更具挑战性。现有方法主要侧重于学习突出的视觉模式,而忽略了如何捕捉对象的内部结构,导致难以获得对象内部完整的分辨区域,从而限制了 FGVC 的性能。针对上述问题,我们提出了一种用于细粒度视觉分类的结构信息挖掘和对象感知特征增强(SIM-OFE)方法,该方法可以挖掘视觉对象的内部结构组成和外观特征。具体来说,我们首先提出了一个简单而有效的混合感知注意力模块,用于基于全局范围和局部范围的重要性分析来定位视觉对象。然后,我们提出了一个结构信息挖掘模块,对物体内部关键区域的分布和上下文关系进行建模,突出整个物体和用于区分细微差别的鉴别区域。最后,我们还提出了一个对象感知特征增强模块,以细心耦合的方式将全局范围和局部范围的判别特征结合起来,从而在细粒度识别中实现强大的视觉表征。在三个 FGVC 基准数据集上进行的广泛实验证明,我们提出的 SIM-OFE 方法可以达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1