Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection

Yifan Xu;Mengdan Zhang;Xiaoshan Yang;Changsheng Xu
{"title":"Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection","authors":"Yifan Xu;Mengdan Zhang;Xiaoshan Yang;Changsheng Xu","doi":"10.1109/TIP.2024.3485518","DOIUrl":null,"url":null,"abstract":"We explore multi-modal contextual knowledge learned through multi-modal masked language modeling to provide explicit localization guidance for novel classes in open-vocabulary object detection (OVD). Intuitively, a well-modeled and correctly predicted masked concept word should effectively capture the textual contexts, visual contexts, and the cross-modal correspondence between texts and regions, thereby automatically activating high attention on corresponding regions. In light of this, we propose a multi-modal contextual knowledge distillation framework, MMC-Det, to explicitly supervise a student detector with the context-aware attention of the masked concept words in a teacher fusion transformer. The teacher fusion transformer is trained with our newly proposed diverse multi-modal masked language modeling (D-MLM) strategy, which significantly enhances the fine-grained region-level visual context modeling in the fusion transformer. The proposed distillation process provides additional contextual guidance to the concept-region matching of the detector, thereby further improving the OVD performance. Extensive experiments performed upon various detection datasets show the effectiveness of our multi-modal context learning strategy.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10738303/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore multi-modal contextual knowledge learned through multi-modal masked language modeling to provide explicit localization guidance for novel classes in open-vocabulary object detection (OVD). Intuitively, a well-modeled and correctly predicted masked concept word should effectively capture the textual contexts, visual contexts, and the cross-modal correspondence between texts and regions, thereby automatically activating high attention on corresponding regions. In light of this, we propose a multi-modal contextual knowledge distillation framework, MMC-Det, to explicitly supervise a student detector with the context-aware attention of the masked concept words in a teacher fusion transformer. The teacher fusion transformer is trained with our newly proposed diverse multi-modal masked language modeling (D-MLM) strategy, which significantly enhances the fine-grained region-level visual context modeling in the fusion transformer. The proposed distillation process provides additional contextual guidance to the concept-region matching of the detector, thereby further improving the OVD performance. Extensive experiments performed upon various detection datasets show the effectiveness of our multi-modal context learning strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索用于开放词汇对象检测的多模式语境知识
我们探索通过多模态遮蔽语言建模学习到的多模态语境知识,为开放词汇对象检测(OVD)中的新类别提供明确的定位指导。直观地说,一个建模良好且预测正确的遮蔽概念词应能有效捕捉文本语境、视觉语境以及文本与区域之间的跨模态对应关系,从而自动激活对相应区域的高度关注。有鉴于此,我们提出了一个多模态语境知识提炼框架 MMC-Det,在教师融合转换器中明确监督学生检测器对掩蔽概念词的语境感知注意力。教师融合转换器采用我们新提出的多样化多模态掩蔽语言建模(D-MLM)策略进行训练,这大大增强了融合转换器中的细粒度区域级视觉语境建模。建议的提炼过程为检测器的概念-区域匹配提供了额外的语境指导,从而进一步提高了 OVD 性能。在各种检测数据集上进行的大量实验表明了我们的多模态上下文学习策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1