Jette K. Mathiesen, Hannah M. Ashberry, Rohan Pokratath, Jocelyn T. L. Gamler, Baiyu Wang, Andrea Kirsch, Emil T. S. Kjær, Soham Banerjee, Kirsten M. Ø. Jensen, Sara E. Skrabalak
{"title":"Why Colloidal Syntheses of Bimetallic Nanoparticles Cannot be Generalized","authors":"Jette K. Mathiesen, Hannah M. Ashberry, Rohan Pokratath, Jocelyn T. L. Gamler, Baiyu Wang, Andrea Kirsch, Emil T. S. Kjær, Soham Banerjee, Kirsten M. Ø. Jensen, Sara E. Skrabalak","doi":"10.1021/acsnano.4c08835","DOIUrl":null,"url":null,"abstract":"Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (<i>E</i><sup>0</sup><sub>red</sub>) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of <i>in situ</i> X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic <i>E</i><sup>0</sup><sub>red</sub> are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08835","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introducing one general synthesis to form bimetallic nanoparticles (NPs) could accelerate the discovery of NPs for promising energy applications. Although colloidal syntheses can provide precise structural and morphological control of bimetallic NPs, the complex chemical nature of multicomponent syntheses challenges the realization of such synthetic simplicity. Common synthetic issues are frequently ascribed to the variation in metal ion precursor reactivities and complex chemical interactions between the different metal surfaces and capping agents employed. However, no systematic studies have shown how these factors compete to ultimately assign the factor limiting the mixing and formation of bimetallic NPs. Here, we provide a parametric investigation of how the intrinsic standard reduction potentials (E0red) of the metal ions and cocapping agents influence the formation of bimetallic AuCu, AuPd, and PdCu NPs. Using a combination of in situ X-ray total scattering along with transmission electron microscopy and nuclear magnetic resonance spectroscopy, we illustrate the multifunctional role of the cocapping agents through interactions with both the metal ion precursors and NP surfaces to stabilize metastable structures. Additionally, we demonstrate how system-specific side reactions and the local metal ion coordination environment can be used to selectively tune the formation kinetics, structure, and morphology of bimetallic NPs. Ultimately, these insights show that the chemical interactions rather than the intrinsic E0red are responsible for the formation of bimetallic NPs. Broadly, these insights should aid the synthetic design of tailored multimetallic NPs.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.