Dual-Steric Hindrance Modulation of Interface Electrochemistry for Potassium-Ion Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-07 DOI:10.1021/acsnano.4c11874
Ningning Chen, Yinshuang Pang, Zhi Liu, Nai-Lu Shen, Hong Chen, Wanying Zhang, Qingxue Lai, Xiaoping Yi, Yanyu Liang
{"title":"Dual-Steric Hindrance Modulation of Interface Electrochemistry for Potassium-Ion Batteries","authors":"Ningning Chen, Yinshuang Pang, Zhi Liu, Nai-Lu Shen, Hong Chen, Wanying Zhang, Qingxue Lai, Xiaoping Yi, Yanyu Liang","doi":"10.1021/acsnano.4c11874","DOIUrl":null,"url":null,"abstract":"Electrolyte chemistry regulation is a feasible and effective approach to achieving a stable electrode–electrolyte interface. How to realize such regulation and establish the relationship between the liquid-phase electrolyte environment and solid-phase electrode remains a significant challenge, especially in solid electrolyte interphase (SEI) for metal-ion batteries. In this work, solvent/anion steric hindrance is regarded as an essential factor in exploring the electrolyte chemistry regulation on forming ether-based K<sup>+</sup>-dominated SEI interface through the cross-combination strategy. Theoretical calculation and experimental evidence have successfully indicated a general principle that the combination of increasing solvent steric hindrance with decreasing anion steric hindrance indeed prompts the construction of an ideal anion-rich sheath solvation structure and guarantees the cycling stability of antimony-based alloy electrode (Sb@3DC, Sb nanoparticles anchored in three-dimensional carbon). These confirm the critical role of electrolyte modulation based on molecular design in the formation of stable solid–liquid interfaces, particularly in electrochemical energy storage systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte chemistry regulation is a feasible and effective approach to achieving a stable electrode–electrolyte interface. How to realize such regulation and establish the relationship between the liquid-phase electrolyte environment and solid-phase electrode remains a significant challenge, especially in solid electrolyte interphase (SEI) for metal-ion batteries. In this work, solvent/anion steric hindrance is regarded as an essential factor in exploring the electrolyte chemistry regulation on forming ether-based K+-dominated SEI interface through the cross-combination strategy. Theoretical calculation and experimental evidence have successfully indicated a general principle that the combination of increasing solvent steric hindrance with decreasing anion steric hindrance indeed prompts the construction of an ideal anion-rich sheath solvation structure and guarantees the cycling stability of antimony-based alloy electrode (Sb@3DC, Sb nanoparticles anchored in three-dimensional carbon). These confirm the critical role of electrolyte modulation based on molecular design in the formation of stable solid–liquid interfaces, particularly in electrochemical energy storage systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钾离子电池界面电化学的双稳态阻碍调制
电解质化学调节是实现稳定的电极-电解质界面的一种可行而有效的方法。如何实现这种调节并建立液相电解质环境与固相电极之间的关系仍然是一项重大挑战,尤其是在金属离子电池的固态电解质相间(SEI)中。在这项工作中,溶剂/阴离子立体阻碍被视为探索电解质化学调节的一个重要因素,通过交叉结合策略形成以醚基 K+ 为主导的 SEI 界面。理论计算和实验证明,溶剂立体阻碍的增加与阴离子立体阻碍的减少相结合,确实能促使构建理想的富阴离子鞘溶结构,并保证锑基合金电极(Sb@3DC,锚定在三维碳中的锑纳米粒子)的循环稳定性。这证实了基于分子设计的电解质调控在形成稳定的固液界面,特别是在电化学储能系统中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Mucous Permeable Local Delivery Strategy Based on Manganese-Enhanced Bacterial Cuproptosis-like Death for Bacterial Pneumonia Treatment. Surface-Reconstructed CdNNi3 Antiperovskite Electrocatalyst: Unlocking Ampere-Level Current Density for Hydrogen Evolution. Coherent Acoustic Phonons in Plasmonic Nanoparticles: Elastic Properties and Dissipation at Low Temperatures Dual-Steric Hindrance Modulation of Interface Electrochemistry for Potassium-Ion Batteries Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1