Lijun Kan, Yingxian Zhang, Yu Luo, Yao Wei, Jincheng Zhong, Yijian Gao, Ying Liu, Ke Wang, Shengliang Li
{"title":"Near-Infrared Emissive π-Conjugated Oligomer Nanoparticles for Three- and Four-Photon Deep-Brain Microscopic Imaging Beyond 1700 nm Excitation","authors":"Lijun Kan, Yingxian Zhang, Yu Luo, Yao Wei, Jincheng Zhong, Yijian Gao, Ying Liu, Ke Wang, Shengliang Li","doi":"10.1021/acsnano.4c07810","DOIUrl":null,"url":null,"abstract":"High-resolution visualization of the deep brain is still a challenging and very significant issue. Multiphoton microscopy (MPM) holds great promise for high-spatiotemporal deep-tissue imaging under NIR-III and NIR-IV excitation. However, thus far, their applications have been seriously restricted by the scarcity of efficient organic probes. Herein, we designed and synthesized two donor–acceptor–donor-type conjugated small molecules (<b>TNT</b> and <b>TNS</b>) for <i>in vivo</i> mouse deep-brain imaging with three- and four-photon microscopy under 1700 and 2200 nm excitation. With a selenium (Se) substitution, we synthesized two conjugated small molecules to promote their emission into the deep near-infrared region with high quantum yields of 55% and 20% in THF solvent, respectively, and their water-dispersive nanoparticles have relatively large absorption cross-sections in the 1700 and 2200 nm windows, respectively, with good biosafety. With these superiorities, these organic NPs achieve high-resolution deep-brain imaging <i>via</i> three-photon and four-photon microscopy with excitation at 1700 and 2200 nm windows, and 1620 μm deep in the brain vasculature can be visualized <i>in vivo</i>. This study demonstrates the efficiency of NIR-emissive conjugated small molecules for high-performance MPM imaging in the NIR-III and NIR-IV window and provides a route for the future design of organic MPM probes.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution visualization of the deep brain is still a challenging and very significant issue. Multiphoton microscopy (MPM) holds great promise for high-spatiotemporal deep-tissue imaging under NIR-III and NIR-IV excitation. However, thus far, their applications have been seriously restricted by the scarcity of efficient organic probes. Herein, we designed and synthesized two donor–acceptor–donor-type conjugated small molecules (TNT and TNS) for in vivo mouse deep-brain imaging with three- and four-photon microscopy under 1700 and 2200 nm excitation. With a selenium (Se) substitution, we synthesized two conjugated small molecules to promote their emission into the deep near-infrared region with high quantum yields of 55% and 20% in THF solvent, respectively, and their water-dispersive nanoparticles have relatively large absorption cross-sections in the 1700 and 2200 nm windows, respectively, with good biosafety. With these superiorities, these organic NPs achieve high-resolution deep-brain imaging via three-photon and four-photon microscopy with excitation at 1700 and 2200 nm windows, and 1620 μm deep in the brain vasculature can be visualized in vivo. This study demonstrates the efficiency of NIR-emissive conjugated small molecules for high-performance MPM imaging in the NIR-III and NIR-IV window and provides a route for the future design of organic MPM probes.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.