Chirp excitation for natural frequency optical coherence elastography

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-09-09 DOI:10.1364/boe.536685
Chengjin Song, Weichao He, Pengfei Song, Jinping Feng, Yanping Huang, Jingjiang Xu, Lin An, Jia Qin, Kai Gao, Michael D. Twa, Gongpu Lan
{"title":"Chirp excitation for natural frequency optical coherence elastography","authors":"Chengjin Song, Weichao He, Pengfei Song, Jinping Feng, Yanping Huang, Jingjiang Xu, Lin An, Jia Qin, Kai Gao, Michael D. Twa, Gongpu Lan","doi":"10.1364/boe.536685","DOIUrl":null,"url":null,"abstract":"Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the <jats:italic>in vivo</jats:italic> human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an <jats:italic>ex vivo</jats:italic> porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0–840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%–4.0% agar: 239–782 Hz, 198 Hz/%; porcine cornea: 68–414 Hz, 18 Hz/mmHg, IOP: 5–25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%–7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0–5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%–7.5% agar: 253–1429 Hz, 181 Hz/%; porcine cornea: 76–1240 Hz, 32 Hz/mmHg, IOP: 5–40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.536685","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the in vivo human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an ex vivo porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0–840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%–4.0% agar: 239–782 Hz, 198 Hz/%; porcine cornea: 68–414 Hz, 18 Hz/mmHg, IOP: 5–25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%–7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0–5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%–7.5% agar: 253–1429 Hz, 181 Hz/%; porcine cornea: 76–1240 Hz, 32 Hz/mmHg, IOP: 5–40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于固有频率光学相干弹性成像的啁啾激励
光学相干弹性成像(OCE)最近已被用于表征脆弱组织(如活体人类角膜)的自然频率,其组织振荡幅度可达亚微米级。在此,我们研究了使用接触式压电换能器(PZT)啁啾激励的宽带频谱样本刺激,并比较了其与非接触式空气脉冲激励在眼内压(IOP)为 5-40 mmHg 的情况下对 1.0-7.5% 琼脂模型和活体猪角膜进行 OCE 测量的性能。持续时间为 3 毫秒的空气脉冲产生了 ∼0-840 Hz 的激励频谱,有效地量化了较软样品(例如,1.0%-4.0%)的一阶固有频率、1.0%-4.0%琼脂:239-782 Hz,198 Hz/%;猪角膜:68-414 Hz,18 Hz/mmHg,眼压:5-25 mmHg),但在测量较硬样品(如 4.5%-7.5%琼脂,猪角膜:眼压≥ 30 mmHg)的自然频率或高阶自然频率成分时显示出局限性。相比之下,啁啾激励产生的频谱要宽得多(如 0-5000 Hz),能够量化一阶固有频率(1.0%-7.5% 琼脂:253-1429 Hz,181 Hz/%;猪角膜:76-1240 Hz,32 Hz/mmHg,眼压:5-40 mmHg)和高阶固有频率。修正的布兰-阿尔特曼分析(自然频率的平均值与相对差异)显示偏差为 20.4%,这是由于 PZT 探头的接触性质带来了额外的质量和频率。这些发现,特别是两种激励方法的优势和局限性,可以用来验证自然频率 OCE 的潜在应用,为正在进行的利用亚微米组织振荡特征的生物力学表征方法的开发铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors. Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography. On bench evaluation of intraocular lenses: performance of a commercial interferometer. Predictive coding compressive sensing optical coherence tomography hardware implementation. Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1