Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-10-30 eCollection Date: 2024-11-01 DOI:10.1364/BOE.538756
Mengyuan Wang, Jianing Mao, Hang Su, Yuye Ling, Chuanqing Zhou, Yikai Su
{"title":"Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography.","authors":"Mengyuan Wang, Jianing Mao, Hang Su, Yuye Ling, Chuanqing Zhou, Yikai Su","doi":"10.1364/BOE.538756","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce a physics-guided deep learning approach for high-quality, real-time Fourier-domain optical coherence tomography (FD-OCT) image reconstruction. Unlike traditional supervised deep learning methods, the proposed method employs unsupervised learning. It leverages the underlying OCT imaging physics to guide the neural networks, which could thus generate high-quality images and provide a physically sound solution to the original problem. Evaluations on synthetic and experimental datasets demonstrate the superior performance of our proposed physics-guided deep learning approach. The method achieves the highest image quality metrics compared to the inverse discrete Fourier transform (IDFT), the optimization-based methods, and several state-of-the-art methods based on deep learning. Our method enables real-time frame rates of 232 fps for synthetic images and 87 fps for experimental images, which represents significant improvements over existing techniques. Our physics-guided deep learning-based approach could offer a promising solution for FD-OCT image reconstruction, which potentially paves the way for leveraging the power of deep learning in real-world OCT imaging applications.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6619-6637"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.538756","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a physics-guided deep learning approach for high-quality, real-time Fourier-domain optical coherence tomography (FD-OCT) image reconstruction. Unlike traditional supervised deep learning methods, the proposed method employs unsupervised learning. It leverages the underlying OCT imaging physics to guide the neural networks, which could thus generate high-quality images and provide a physically sound solution to the original problem. Evaluations on synthetic and experimental datasets demonstrate the superior performance of our proposed physics-guided deep learning approach. The method achieves the highest image quality metrics compared to the inverse discrete Fourier transform (IDFT), the optimization-based methods, and several state-of-the-art methods based on deep learning. Our method enables real-time frame rates of 232 fps for synthetic images and 87 fps for experimental images, which represents significant improvements over existing techniques. Our physics-guided deep learning-based approach could offer a promising solution for FD-OCT image reconstruction, which potentially paves the way for leveraging the power of deep learning in real-world OCT imaging applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物理引导深度学习的傅立叶域光学相干断层扫描实时图像重建。
本文介绍了一种物理引导的深度学习方法,用于高质量、实时傅立叶域光学相干断层成像(FD-OCT)图像重建。与传统的有监督深度学习方法不同,本文提出的方法采用无监督学习。它利用底层的光学相干断层成像物理学来指导神经网络,从而生成高质量的图像,并为原始问题提供物理上合理的解决方案。在合成数据集和实验数据集上进行的评估证明了我们提出的物理引导深度学习方法的优越性能。与反离散傅立叶变换(IDFT)、基于优化的方法以及几种基于深度学习的最先进方法相比,该方法实现了最高的图像质量指标。我们的方法使合成图像的实时帧速率达到 232 fps,实验图像达到 87 fps,与现有技术相比有了显著提高。我们基于物理引导的深度学习方法可为 FD-OCT 图像重建提供一种前景广阔的解决方案,这可能为在真实世界的 OCT 成像应用中利用深度学习的力量铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Super resolution reconstruction of fluorescence microscopy images by a convolutional network with physical priors. Physics-guided deep learning-based real-time image reconstruction of Fourier-domain optical coherence tomography. On bench evaluation of intraocular lenses: performance of a commercial interferometer. Predictive coding compressive sensing optical coherence tomography hardware implementation. Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1