Ruizhi Zuo,Shuwen Wei,Yaning Wang,Kristina Irsch,Jin U Kang
{"title":"High-resolution in vivo 4D-OCT fish-eye imaging using 3D-UNet with multi-level residue decoder.","authors":"Ruizhi Zuo,Shuwen Wei,Yaning Wang,Kristina Irsch,Jin U Kang","doi":"10.1364/boe.532258","DOIUrl":null,"url":null,"abstract":"Optical coherence tomography (OCT) allows high-resolution volumetric imaging of biological tissues in vivo. However, 3D-image acquisition often suffers from motion artifacts due to slow frame rates and involuntary and physiological movements of living tissue. To solve these issues, we implement a real-time 4D-OCT system capable of reconstructing near-distortion-free volumetric images based on a deep learning-based reconstruction algorithm. The system initially collects undersampled volumetric images at a high speed and then upsamples the images in real-time by a convolutional neural network (CNN) that generates high-frequency features using a deep learning algorithm. We compare and analyze both dual-2D- and 3D-UNet-based networks for the OCT 3D high-resolution image reconstruction. We refine the network architecture by incorporating multi-level information to accelerate convergence and improve accuracy. The network is optimized by utilizing the 16-bit floating-point precision for network parameters to conserve GPU memory and enhance efficiency. The result shows that the refined and optimized 3D-network is capable of retrieving the tissue structure more precisely and enable real-time 4D-OCT imaging at a rate greater than 10 Hz with a root mean square error (RMSE) of ∼0.03.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"10 1","pages":"5533-5546"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/boe.532258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography (OCT) allows high-resolution volumetric imaging of biological tissues in vivo. However, 3D-image acquisition often suffers from motion artifacts due to slow frame rates and involuntary and physiological movements of living tissue. To solve these issues, we implement a real-time 4D-OCT system capable of reconstructing near-distortion-free volumetric images based on a deep learning-based reconstruction algorithm. The system initially collects undersampled volumetric images at a high speed and then upsamples the images in real-time by a convolutional neural network (CNN) that generates high-frequency features using a deep learning algorithm. We compare and analyze both dual-2D- and 3D-UNet-based networks for the OCT 3D high-resolution image reconstruction. We refine the network architecture by incorporating multi-level information to accelerate convergence and improve accuracy. The network is optimized by utilizing the 16-bit floating-point precision for network parameters to conserve GPU memory and enhance efficiency. The result shows that the refined and optimized 3D-network is capable of retrieving the tissue structure more precisely and enable real-time 4D-OCT imaging at a rate greater than 10 Hz with a root mean square error (RMSE) of ∼0.03.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.