Origin of the ultrahigh field-induced strain in the Gd-doped 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 ternary ceramic system

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED Japanese Journal of Applied Physics Pub Date : 2024-09-12 DOI:10.35848/1347-4065/ad7147
Namık Kemal Gözüaçık and Sedat Alkoy
{"title":"Origin of the ultrahigh field-induced strain in the Gd-doped 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 ternary ceramic system","authors":"Namık Kemal Gözüaçık and Sedat Alkoy","doi":"10.35848/1347-4065/ad7147","DOIUrl":null,"url":null,"abstract":"This study focused on analyzing the ferroelectric, piezoelectric, and dielectric properties of lead-free Bi0.487Na0.427K0.06Ba0.026TiO3 (0.854BNT-0.12BKT-0.026BT) ternary ceramic system by systematically doping 0.001, 0.01, 0.1, 0.5, and 1.0 mol% Gd2O3. The specific composition that was investigated is located at the tetragonal side of the rhombohedral-tetragonal morphotropic phase boundary (MPB) region. Undoped and Gd-doped BNT-BKT-BT ceramics were produced by the conventional solid-state reaction method. Ferroelectric, piezoelectric, and dielectric properties of ceramics were analyzed by carrying out electrical measurements from sintered samples. An ultrahigh field-induced unipolar strain of 0.52% at 65 kV cm−1, with a converse piezoelectric coefficient d33* of up to 795 pm V−1, was achieved with 0.5 mol% Gd doping. This was attributed to the Gd dopant disrupting the normal ferroelectric order and leading to the formation of a nonpolar relaxor phase. The field-induced transition from the nonpolar relaxor phase to the normal ferroelectric phase resulted in relatively large field-induced strain values in the 0.5 mol% Gd-doped ceramics. These results suggest that Gd-doped BNT-BKT-BT ceramics hold promise for digital actuator applications.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"197 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad7147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study focused on analyzing the ferroelectric, piezoelectric, and dielectric properties of lead-free Bi0.487Na0.427K0.06Ba0.026TiO3 (0.854BNT-0.12BKT-0.026BT) ternary ceramic system by systematically doping 0.001, 0.01, 0.1, 0.5, and 1.0 mol% Gd2O3. The specific composition that was investigated is located at the tetragonal side of the rhombohedral-tetragonal morphotropic phase boundary (MPB) region. Undoped and Gd-doped BNT-BKT-BT ceramics were produced by the conventional solid-state reaction method. Ferroelectric, piezoelectric, and dielectric properties of ceramics were analyzed by carrying out electrical measurements from sintered samples. An ultrahigh field-induced unipolar strain of 0.52% at 65 kV cm−1, with a converse piezoelectric coefficient d33* of up to 795 pm V−1, was achieved with 0.5 mol% Gd doping. This was attributed to the Gd dopant disrupting the normal ferroelectric order and leading to the formation of a nonpolar relaxor phase. The field-induced transition from the nonpolar relaxor phase to the normal ferroelectric phase resulted in relatively large field-induced strain values in the 0.5 mol% Gd-doped ceramics. These results suggest that Gd-doped BNT-BKT-BT ceramics hold promise for digital actuator applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺钆 0.854Bi0.5Na0.5TiO3-0.12Bi0.5K0.5TiO3-0.026BaTiO3 三元陶瓷体系中的超高磁场诱导应变的起源
本研究重点分析了无铅 Bi0.487Na0.427K0.06Ba0.026TiO3(0.854BNT-0.12BKT-0.026BT)三元陶瓷体系通过系统掺杂 0.001、0.01、0.1、0.5 和 1.0 mol% Gd2O3 所产生的铁电、压电和介电特性。所研究的特定成分位于斜方-四方形貌相界(MPB)区域的四方侧。未掺杂和掺钆的 BNT-BKT-BT 陶瓷是通过传统的固态反应方法制得的。通过对烧结样品进行电学测量,分析了陶瓷的铁电、压电和介电特性。掺杂 0.5 mol% Gd 后,在 65 kV cm-1 的电压下可获得 0.52% 的超高场致单极应变,压电系数 d33* 则高达 795 pm V-1。这归因于掺杂钆破坏了正常的铁电秩序,并导致非极性弛豫相的形成。从非极性弛豫相到正常铁电相的场致转变导致掺杂 0.5 摩尔% Gd 的陶瓷具有相对较大的场致应变值。这些结果表明,掺钆 BNT-BKT-BT 陶瓷有望应用于数字致动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
期刊最新文献
Thick piezoelectric films by aerosol deposition at room temperature: corona poling and force sensing Research on optical properties of Eu3+ doped bismuth silicate crystals based on first principles Effect of gas injection pattern on magnetically expanding rf plasma source Rotary pump using underwater electrical discharge Formation conditions of the tungsten porous thin film with pulsed laser deposition under various gas atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1