{"title":"Geometric models for incorporating solid accumulation at the nodes of open-cell foams","authors":"Esmari Maré, Sonia Fidder","doi":"10.1615/jpormedia.2024053135","DOIUrl":null,"url":null,"abstract":"In open-cell foams solid lumps are often present at the intersection of struts, known as the nodes. In this study models available in the literature that represent foams with solid accumulation at the nodes are investigated and used to obtain predictive equations for the permeability (for both the Darcy and Forchheimer flow regimes) and specific surface area for given porosity and average pore diameter values. The majority of the predictive equations proposed for the specific surface area based on these models are novel contributions. Furthermore, a method is proposed for incorporating solid lumps at the nodes into the existing foam (or three-strut) rectangular Representative Unit Cell (RUC) model. The models obtained from the literature along with the node adjusted RUC model are compared to one another and to relevant experimental data from the literature for foams that have accumulation of solid matter present at the nodes. The node adjusted RUC model provides physically meaningful and satisfactory changes to the specific surface area and permeability predictions of the existing foam RUC model.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":"12 2 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024053135","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In open-cell foams solid lumps are often present at the intersection of struts, known as the nodes. In this study models available in the literature that represent foams with solid accumulation at the nodes are investigated and used to obtain predictive equations for the permeability (for both the Darcy and Forchheimer flow regimes) and specific surface area for given porosity and average pore diameter values. The majority of the predictive equations proposed for the specific surface area based on these models are novel contributions. Furthermore, a method is proposed for incorporating solid lumps at the nodes into the existing foam (or three-strut) rectangular Representative Unit Cell (RUC) model. The models obtained from the literature along with the node adjusted RUC model are compared to one another and to relevant experimental data from the literature for foams that have accumulation of solid matter present at the nodes. The node adjusted RUC model provides physically meaningful and satisfactory changes to the specific surface area and permeability predictions of the existing foam RUC model.
期刊介绍:
The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.