{"title":"Risk factor-targeted abdominal aortic aneurysm screening: systematic review of risk prediction for abdominal aortic aneurysm.","authors":"Liam Musto,Aiden Smith,Coral Pepper,Sylwia Bujkiewicz,Matthew Bown","doi":"10.1093/bjs/znae239","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nThis systematic review aimed to investigate the current state of risk prediction for abdominal aortic aneurysm in the literature, identifying and comparing published models and describing their performance and applicability to a population-based targeted screening strategy.\r\n\r\nMETHODS\r\nElectronic databases MEDLINE (via Ovid), Embase (via Ovid), MedRxiv, Web of Science, and the Cochrane Library were searched for papers reporting or validating risk prediction models for abdominal aortic aneurysm. Studies were included only if they were developed on a cohort or study group derived from the general population and used multiple variables with at least one modifiable risk factor. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. A synthesis and comparison of the identified models was undertaken.\r\n\r\nRESULTS\r\nThe search identified 4813 articles. After full-text review, 37 prediction models were identified, of which 4 were unique predictive models that were reported in full. Applicability was poor when considering targeted screening strategies using electronic health record-based populations. Common risk factors used for the predictive models were explored across all 37 models; the most common risk factors in predictive models for abdominal aortic aneurysm were: age, sex, biometrics (such as height, weight, or BMI), smoking, hypertension, hypercholesterolaemia, and history of heart disease. Few models had undergone standardized model development, adequate external validation, or impact evaluation.\r\n\r\nCONCLUSION\r\nThis study identified four risk models that can be replicated and used to predict abdominal aortic aneurysm with acceptable levels of discrimination. None of the models have been validated externally.","PeriodicalId":136,"journal":{"name":"British Journal of Surgery","volume":"24 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjs/znae239","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
This systematic review aimed to investigate the current state of risk prediction for abdominal aortic aneurysm in the literature, identifying and comparing published models and describing their performance and applicability to a population-based targeted screening strategy.
METHODS
Electronic databases MEDLINE (via Ovid), Embase (via Ovid), MedRxiv, Web of Science, and the Cochrane Library were searched for papers reporting or validating risk prediction models for abdominal aortic aneurysm. Studies were included only if they were developed on a cohort or study group derived from the general population and used multiple variables with at least one modifiable risk factor. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. A synthesis and comparison of the identified models was undertaken.
RESULTS
The search identified 4813 articles. After full-text review, 37 prediction models were identified, of which 4 were unique predictive models that were reported in full. Applicability was poor when considering targeted screening strategies using electronic health record-based populations. Common risk factors used for the predictive models were explored across all 37 models; the most common risk factors in predictive models for abdominal aortic aneurysm were: age, sex, biometrics (such as height, weight, or BMI), smoking, hypertension, hypercholesterolaemia, and history of heart disease. Few models had undergone standardized model development, adequate external validation, or impact evaluation.
CONCLUSION
This study identified four risk models that can be replicated and used to predict abdominal aortic aneurysm with acceptable levels of discrimination. None of the models have been validated externally.
期刊介绍:
The British Journal of Surgery (BJS), incorporating the European Journal of Surgery, stands as Europe's leading peer-reviewed surgical journal. It serves as an invaluable platform for presenting high-quality clinical and laboratory-based research across a wide range of surgical topics. In addition to providing a comprehensive coverage of traditional surgical practices, BJS also showcases emerging areas in the field, such as minimally invasive therapy and interventional radiology.
While the journal appeals to general surgeons, it also holds relevance for specialty surgeons and professionals working in closely related fields. By presenting cutting-edge research and advancements, BJS aims to revolutionize the way surgical knowledge is shared and contribute to the ongoing progress of the surgical community.