Yunzhe Zheng, Xinhao Wang, Yudan Dong, Xiaoyu Wu, Donghua Xie, Yang Liu, Peng Zhou, Zhaokun Xiong, Chuan-Shu He, Bo Lai
{"title":"Overlooked role of boron precursors in tuning engineered zero-valent iron to activate peracetic acid for sustainable micropollutant oxidation","authors":"Yunzhe Zheng, Xinhao Wang, Yudan Dong, Xiaoyu Wu, Donghua Xie, Yang Liu, Peng Zhou, Zhaokun Xiong, Chuan-Shu He, Bo Lai","doi":"10.1016/j.apcatb.2024.124580","DOIUrl":null,"url":null,"abstract":"This work comprehensively investigated how the characteristics of boron (B) precursors affect the catalytic activity of microscale zero-valent iron (mZVI) towards peracetic acid (PAA) activation for micropollutant degradation. Three boron precursors were introduced into mZVI by ball milling with their physical-chemical properties carefully characterized, and their ability to activate PAA comprehensively evaluated via sulfamethoxazole (SMX) oxidation efficiency. It’s found that BO-ZVI demonstrated the highest capability to activate PAA for SMX degradation, with 2 ∼ 3 times higher than NaBO-ZVI and HBO-ZVI. Specially, B precursors regulate the ability of mZVI to activate PAA via the following two aspects: (1) affecting the formation and content of FeB to accelerate Fe(II) regeneration; (2) increasing the hydrophilicity of the iron particles and the affinity of B-ZVI for binding PAA to different extent. This study highlights the important role of boron precursors in tuning engineered mZVI to initiate Fenton-like process for water purification.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work comprehensively investigated how the characteristics of boron (B) precursors affect the catalytic activity of microscale zero-valent iron (mZVI) towards peracetic acid (PAA) activation for micropollutant degradation. Three boron precursors were introduced into mZVI by ball milling with their physical-chemical properties carefully characterized, and their ability to activate PAA comprehensively evaluated via sulfamethoxazole (SMX) oxidation efficiency. It’s found that BO-ZVI demonstrated the highest capability to activate PAA for SMX degradation, with 2 ∼ 3 times higher than NaBO-ZVI and HBO-ZVI. Specially, B precursors regulate the ability of mZVI to activate PAA via the following two aspects: (1) affecting the formation and content of FeB to accelerate Fe(II) regeneration; (2) increasing the hydrophilicity of the iron particles and the affinity of B-ZVI for binding PAA to different extent. This study highlights the important role of boron precursors in tuning engineered mZVI to initiate Fenton-like process for water purification.