{"title":"Selective electrosynthesis of ammonia via nitric oxide electroreduction catalyzed by copper nanowires infused in nitrogen-doped carbon nanorods","authors":"Dinesh Dhanabal, Yuyeon Song, Seoyoung Jang, Sangaraju Shanmugam","doi":"10.1016/j.apcatb.2024.124577","DOIUrl":null,"url":null,"abstract":"The electrochemical nitric oxide reduction reaction (eNORR) is meticulously investigated as an alternative to the energy intensive Haber-Bosch process to produce Ammonia (NH). However, the eNORR is hindered by NH selectivity due to side reactions and mass-transfer limitations. In this work, we rationally designed copper nanowires (Cu NWs) infused in the lotus-root-like multi-nano-channels of the porous N-doped carbon nanorods (Cu-mNCNR) for a high selective eNORR to synthesize NH at ambient conditions. The optimized catalyst, Cu-mNCNR2, has achieved the highest NH Faradaic efficiency of 79% with NH yield rate of 34.5 μmol cm h at −0.4 V. Moreover, the Cu-mNCNR2 has demonstrated a vigorous performance in the 24 h continuous NO electrolysis to produce NH. Additionally, a prototype device, the Zn-NO battery, was demonstrated. This study shows that the rational design of a catalyst considering mass-transfer limitations is crucial to achieving high selective NH electrosynthesis in eNORR.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical nitric oxide reduction reaction (eNORR) is meticulously investigated as an alternative to the energy intensive Haber-Bosch process to produce Ammonia (NH). However, the eNORR is hindered by NH selectivity due to side reactions and mass-transfer limitations. In this work, we rationally designed copper nanowires (Cu NWs) infused in the lotus-root-like multi-nano-channels of the porous N-doped carbon nanorods (Cu-mNCNR) for a high selective eNORR to synthesize NH at ambient conditions. The optimized catalyst, Cu-mNCNR2, has achieved the highest NH Faradaic efficiency of 79% with NH yield rate of 34.5 μmol cm h at −0.4 V. Moreover, the Cu-mNCNR2 has demonstrated a vigorous performance in the 24 h continuous NO electrolysis to produce NH. Additionally, a prototype device, the Zn-NO battery, was demonstrated. This study shows that the rational design of a catalyst considering mass-transfer limitations is crucial to achieving high selective NH electrosynthesis in eNORR.