Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2024-09-10 DOI:10.1016/j.ecosta.2024.09.001
Jan Pablo Burgard, Joscha Krause, Domingo Morales, Anna-Lena Wölwer
{"title":"Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation","authors":"Jan Pablo Burgard, Joscha Krause, Domingo Morales, Anna-Lena Wölwer","doi":"10.1016/j.ecosta.2024.09.001","DOIUrl":null,"url":null,"abstract":"Small area estimation of multivariable non-linear domain indicators using aggregated data is addressed. By assuming that the target vector follows a multivariate Fay-Herriot model, empirical best predictors of domain parameters that are arbitrary Lebesgue-measurable functions of multiple target variables are derived. In this context, Monte Carlo and Gauss-Hermite quadrature methods for integral approximation are discussed. A parametric bootstrap algorithm for mean squared error estimation is presented. Simulation experiments are conducted to study the behaviour of the introduced methodology. Moreover, an illustrative application to real data from the Spanish labour force survey is provided. In this example, province-level unemployment rates, crossed by age classes and sex, are estimated.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2024.09.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Small area estimation of multivariable non-linear domain indicators using aggregated data is addressed. By assuming that the target vector follows a multivariate Fay-Herriot model, empirical best predictors of domain parameters that are arbitrary Lebesgue-measurable functions of multiple target variables are derived. In this context, Monte Carlo and Gauss-Hermite quadrature methods for integral approximation are discussed. A parametric bootstrap algorithm for mean squared error estimation is presented. Simulation experiments are conducted to study the behaviour of the introduced methodology. Moreover, an illustrative application to real data from the Spanish labour force survey is provided. In this example, province-level unemployment rates, crossed by age classes and sex, are estimated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量费-赫里奥特模型下的经验最佳预测值及其数值近似值
本文探讨了利用汇总数据对多变量非线性领域指标进行小范围估算的问题。通过假设目标向量遵循多变量 Fay-Herriot 模型,得出了作为多个目标变量的任意 Lebesgue 可量函数的领域参数的经验最佳预测值。在此背景下,讨论了用于积分近似的蒙特卡罗和高斯-赫米特正交方法。还介绍了用于均方误差估计的参数引导算法。通过模拟实验研究了所引入方法的性能。此外,还提供了西班牙劳动力调查真实数据的示例应用。在这个例子中,估算了按年龄和性别分类的省一级失业率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1