Fabrication of Cu–CeO2 Catalyst with Abundant Interfacial Cu+–O–Ce3+–OV (Oxygen Vacancy) Sites for Boosting CO2 Electroreduction to Methane

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-09-18 DOI:10.1021/acsmaterialslett.4c01683
Shao-Chen Wang, Xiang Ji, Rui Hou, Longlong Qi, Peng Jing, Xuan Xu, Baocang Liu, Jun Zhang
{"title":"Fabrication of Cu–CeO2 Catalyst with Abundant Interfacial Cu+–O–Ce3+–OV (Oxygen Vacancy) Sites for Boosting CO2 Electroreduction to Methane","authors":"Shao-Chen Wang, Xiang Ji, Rui Hou, Longlong Qi, Peng Jing, Xuan Xu, Baocang Liu, Jun Zhang","doi":"10.1021/acsmaterialslett.4c01683","DOIUrl":null,"url":null,"abstract":"Accelerating the conversion of *CO to *CHO and promoting the adsorption and hydrogenation of *CHO are the keys to achieving a highly selective electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to CH<sub>4</sub> over Cu-based catalysts. Herein, a novel electrocatalyst comprising highly dispersed Cu nanoclusters (Cu<sub>NCs</sub>) supported on oxygen vacancy (O<sub>V</sub>)-rich CeO<sub>2</sub> on carbon paper (Cu<sub>NCs</sub>–CeO<sub>2</sub>/CP) with plentiful interfacial Cu<sup>+</sup>–O–Ce<sup>3+</sup>–O<sub>V</sub> sites is constructed via a facile electrodeposition method. Various <i>in situ</i>/<i>ex situ</i> characterizations and theoretical calculations unveil that the Cu<sup>+</sup>–O–Ce<sup>3+</sup>–O<sub>V</sub> sites can effectively regulate the pathway of the CO<sub>2</sub>RR, accelerate the *CO → *CHO process, stabilize the *CHO and *OCH<sub>3</sub> intermediates, and promote their hydrogenation to produce CH<sub>4</sub>. Furthermore, the critical role of Ce<sup>3+</sup> and the O<sub>V</sub> species in forming Cu<sup>+</sup>–O–Ce<sup>3+</sup>–O<sub>V</sub> to maintain the electrocatalytic CO<sub>2</sub>RR activity is revealed. The optimized Cu<sub>NCs</sub>–CeO<sub>2</sub>/CP electrocatalyst exhibits a CH<sub>4</sub> Faradaic efficiency of 68.3% at 500 mA cm<sup>–2</sup>, with a high partial current density of 340 mA cm<sup>–2</sup>.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerating the conversion of *CO to *CHO and promoting the adsorption and hydrogenation of *CHO are the keys to achieving a highly selective electrocatalytic CO2 reduction reaction (CO2RR) to CH4 over Cu-based catalysts. Herein, a novel electrocatalyst comprising highly dispersed Cu nanoclusters (CuNCs) supported on oxygen vacancy (OV)-rich CeO2 on carbon paper (CuNCs–CeO2/CP) with plentiful interfacial Cu+–O–Ce3+–OV sites is constructed via a facile electrodeposition method. Various in situ/ex situ characterizations and theoretical calculations unveil that the Cu+–O–Ce3+–OV sites can effectively regulate the pathway of the CO2RR, accelerate the *CO → *CHO process, stabilize the *CHO and *OCH3 intermediates, and promote their hydrogenation to produce CH4. Furthermore, the critical role of Ce3+ and the OV species in forming Cu+–O–Ce3+–OV to maintain the electrocatalytic CO2RR activity is revealed. The optimized CuNCs–CeO2/CP electrocatalyst exhibits a CH4 Faradaic efficiency of 68.3% at 500 mA cm–2, with a high partial current density of 340 mA cm–2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备具有丰富表面 Cu+-O-Ce3+-OV(氧空位)位点的 Cu-CeO2 催化剂,促进 CO2 电还原为甲烷
加速*CO 向*CHO 的转化以及促进*CHO 的吸附和氢化是在铜基催化剂上实现高选择性电催化 CO2 还原反应(CO2RR)至 CH4 的关键。本文通过简便的电沉积方法,构建了一种新型电催化剂,该催化剂由高度分散的铜纳米团簇(CuNCs)支撑在碳纸上富含氧空位(OV)的CeO2(CuNCs-CeO2/CP)上,并具有大量的界面Cu+-O-Ce3+-OV位点。各种原位/原位表征和理论计算表明,Cu+-O-Ce3+-OV 位点能有效调节 CO2RR 的路径,加速 *CO → *CHO 过程,稳定 *CHO 和 *OCH3 中间产物,并促进它们加氢生成 CH4。此外,还揭示了 Ce3+ 和 OV 物种在形成 Cu+-O-Ce3+-OV 以保持 CO2RR 电催化活性方面的关键作用。优化后的 CuNCs-CeO2/CP 电催化剂在 500 mA cm-2 电流下的 CH4 法拉第效率为 68.3%,部分电流密度高达 340 mA cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction Magnetic Microactuators Based on Particle Jamming Novel NIR-II 3,5-Julolidinyl aza-BODIPY for Photothermal Therapy of Gliomas Stem Cells by Brain Stereotactic Injection New Concept for HLCT Emitter: Acceptor Molecule in Exciplex System for Highly Efficient and Extremely Low-Efficiency Roll-Off Solution-Processed OLED Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1