Designer spin-orbit superlattices: symmetry-protected Dirac cones and spin Berry curvature in two-dimensional van der Waals metamaterials

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-09-19 DOI:10.1038/s42005-024-01801-8
L. M. Martelo, Aires Ferreira
{"title":"Designer spin-orbit superlattices: symmetry-protected Dirac cones and spin Berry curvature in two-dimensional van der Waals metamaterials","authors":"L. M. Martelo, Aires Ferreira","doi":"10.1038/s42005-024-01801-8","DOIUrl":null,"url":null,"abstract":"The emergence of strong relativistic spin-orbit effects in low-dimensional systems provides a rich opportunity for exploring unconventional states of matter. Here, we present a route to realise tunable relativistic band structures based on the lateral patterning of proximity-induced spin-orbit coupling. The concept is illustrated on a patterned graphene–transition metal dichalcogenide heterostructure, where the spatially periodic spin-orbit coupling induces a rich mini-band structure featuring massless and massive Dirac bands carrying large spin Berry curvature. The envisaged systems support robust and gate-tunable spin Hall responses driven by the quantum geometry of mini-bands, which can be tailored through metasurface fabrication methods and twisting effects. These findings open pathways to two-dimensional quantum material design and low-power spintronic applications. Engineering sizeable spin-orbit coupling (SOC) in graphene generates effects unmatched in traditional low-dimensional systems. Here, the authors show that the periodic modulation of SOC in 1D patterned graphene heterostructures leads to unusual mini-band structures with symmetry-protected Dirac cones featuring enhanced spin Berry curvature, which paves the way to tunable spin Hall responses.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01801-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01801-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of strong relativistic spin-orbit effects in low-dimensional systems provides a rich opportunity for exploring unconventional states of matter. Here, we present a route to realise tunable relativistic band structures based on the lateral patterning of proximity-induced spin-orbit coupling. The concept is illustrated on a patterned graphene–transition metal dichalcogenide heterostructure, where the spatially periodic spin-orbit coupling induces a rich mini-band structure featuring massless and massive Dirac bands carrying large spin Berry curvature. The envisaged systems support robust and gate-tunable spin Hall responses driven by the quantum geometry of mini-bands, which can be tailored through metasurface fabrication methods and twisting effects. These findings open pathways to two-dimensional quantum material design and low-power spintronic applications. Engineering sizeable spin-orbit coupling (SOC) in graphene generates effects unmatched in traditional low-dimensional systems. Here, the authors show that the periodic modulation of SOC in 1D patterned graphene heterostructures leads to unusual mini-band structures with symmetry-protected Dirac cones featuring enhanced spin Berry curvature, which paves the way to tunable spin Hall responses.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计师自旋轨道超晶格:二维范德华超材料中受对称保护的狄拉克锥和自旋贝里曲率
低维系统中出现的强相对论自旋轨道效应为探索非传统的物质状态提供了丰富的机会。在此,我们提出了一条基于近距离自旋轨道耦合的横向图案化来实现可调相对论能带结构的途径。这一概念在图案化的石墨烯-过渡金属二掺杂异质结构上得到了诠释,其中空间周期性自旋轨道耦合诱导了丰富的迷你带状结构,具有无质量和大质量的狄拉克带,并携带大自旋贝里曲率。设想中的系统支持由迷你带量子几何驱动的稳健且可门控调谐的自旋霍尔响应,可通过元表面制造方法和扭曲效应对其进行定制。这些发现为二维量子材料设计和低功耗自旋电子应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1