Suyun Li, Yanbo Shan, Jingyi Chen, Xiaotong Chen, Zengqin Shi, Lisheng Zhao, Rujie He, Ying Li
{"title":"3D Printing and Biomedical Applications of Piezoelectric Composites: A Critical Review","authors":"Suyun Li, Yanbo Shan, Jingyi Chen, Xiaotong Chen, Zengqin Shi, Lisheng Zhao, Rujie He, Ying Li","doi":"10.1002/admt.202401160","DOIUrl":null,"url":null,"abstract":"Piezoelectric composites have received widespread attentions in the fields of biomedicine and in vitro wearable devices due to their ability to convert mechanical forces into charge signals. The preparation of piezoelectric composites with complex structures through 3D printing technology can not only effectively improve their piezoelectric output, but also enable their customized therapeutic applications. This paper first introduces the types of piezoelectric composites and reviews the 3D printing technology commonly used in their preparation, analyzing the advantages and disadvantages of each 3D printing technology. Then, the state‐of‐the‐art of the biomedical applications of piezoelectric composites, including drug sustained‐release, wound healing promotion, bone tissue cells growth promoting, neurorehabilitation stimulating, ultrasonic diagnosis, and in vivo biosensing and in vitro wearable sensing, are emphasized. Finally, the main factors affecting the applications of 3D printed piezoelectric composites are outlooked, and an in‐depth discussion on the challenges toward 3D printed piezoelectric composites are analyzed. This review is believed to provide some fundamental knowledge of 3D printed piezoelectric composites.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202401160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric composites have received widespread attentions in the fields of biomedicine and in vitro wearable devices due to their ability to convert mechanical forces into charge signals. The preparation of piezoelectric composites with complex structures through 3D printing technology can not only effectively improve their piezoelectric output, but also enable their customized therapeutic applications. This paper first introduces the types of piezoelectric composites and reviews the 3D printing technology commonly used in their preparation, analyzing the advantages and disadvantages of each 3D printing technology. Then, the state‐of‐the‐art of the biomedical applications of piezoelectric composites, including drug sustained‐release, wound healing promotion, bone tissue cells growth promoting, neurorehabilitation stimulating, ultrasonic diagnosis, and in vivo biosensing and in vitro wearable sensing, are emphasized. Finally, the main factors affecting the applications of 3D printed piezoelectric composites are outlooked, and an in‐depth discussion on the challenges toward 3D printed piezoelectric composites are analyzed. This review is believed to provide some fundamental knowledge of 3D printed piezoelectric composites.
压电复合材料能够将机械力转化为电荷信号,因此在生物医学和体外可穿戴设备领域受到广泛关注。通过三维打印技术制备具有复杂结构的压电复合材料,不仅能有效提高其压电输出,还能实现定制化治疗应用。本文首先介绍了压电复合材料的类型,并回顾了制备压电复合材料常用的 3D 打印技术,分析了每种 3D 打印技术的优缺点。然后,重点介绍了压电复合材料在生物医学方面的应用现状,包括药物缓释、促进伤口愈合、促进骨组织细胞生长、刺激神经康复、超声波诊断、体内生物传感和体外可穿戴传感等。最后,展望了影响 3D 打印压电复合材料应用的主要因素,并深入探讨了 3D 打印压电复合材料面临的挑战。相信这篇综述能为读者提供一些有关 3D 打印压电复合材料的基础知识。