Yuan Yang, Keli Gao, Hao Wang, Shuai Yuan, Jinchao Du, Yansong Ji, Dehui Fu, Yin Huang, Guangkai Cui
{"title":"Decomposition characteristics and influencing mechanisms of C4F7N/CO2 gas with different metal materials","authors":"Yuan Yang, Keli Gao, Hao Wang, Shuai Yuan, Jinchao Du, Yansong Ji, Dehui Fu, Yin Huang, Guangkai Cui","doi":"10.1063/5.0214100","DOIUrl":null,"url":null,"abstract":"C4F7N/CO2 gas mixture, as the main new environmentally friendly gas insulation medium, is now being widely used in the ring network switchgear and other gas electrical equipment. In this paper, a test platform was constructed to simulate partial discharge in a gas medium, the decomposition characteristics of the C4F7N/CO2 gas mixture during suspended potential discharge were studied under four different metal electrode materials: stainless steel, purple copper, tungsten copper, and aluminum alloy. The results show that the main decomposition products of the C4F7N/CO2 gas mixture during suspended discharge are CO, CF4, C4F8, C3F8, C3F6, CF3CN, and C2F4 gases, which are independent of the metal material. On the whole, when the metal electrode material is stainless steel, the highest amount of decomposition products are generated from the C4F7N/CO2 gas mixture; when the metal electrode material is aluminum alloy, the amount of decomposition products produced by C4F7N/CO2 gas mixture is the least, and the content difference of some decomposition products between these two metal materials is as high as 70%. The decomposition products of the C4F7N/CO2 gas mixture decreased gradually with the increase in the gas pressure. Finally, the influence mechanism of different metal materials on the decomposition process of the C4F7N/CO2 gas mixture was analyzed from the microscopic perspectives of charge transfer between gas molecules and molecular structural characteristics. In general, the research results can provide technical reference for the design, selection, and optimization of environmental protection gas insulation equipment.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"192 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0214100","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
C4F7N/CO2 gas mixture, as the main new environmentally friendly gas insulation medium, is now being widely used in the ring network switchgear and other gas electrical equipment. In this paper, a test platform was constructed to simulate partial discharge in a gas medium, the decomposition characteristics of the C4F7N/CO2 gas mixture during suspended potential discharge were studied under four different metal electrode materials: stainless steel, purple copper, tungsten copper, and aluminum alloy. The results show that the main decomposition products of the C4F7N/CO2 gas mixture during suspended discharge are CO, CF4, C4F8, C3F8, C3F6, CF3CN, and C2F4 gases, which are independent of the metal material. On the whole, when the metal electrode material is stainless steel, the highest amount of decomposition products are generated from the C4F7N/CO2 gas mixture; when the metal electrode material is aluminum alloy, the amount of decomposition products produced by C4F7N/CO2 gas mixture is the least, and the content difference of some decomposition products between these two metal materials is as high as 70%. The decomposition products of the C4F7N/CO2 gas mixture decreased gradually with the increase in the gas pressure. Finally, the influence mechanism of different metal materials on the decomposition process of the C4F7N/CO2 gas mixture was analyzed from the microscopic perspectives of charge transfer between gas molecules and molecular structural characteristics. In general, the research results can provide technical reference for the design, selection, and optimization of environmental protection gas insulation equipment.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.