Wenjing Liu,Li Yan,Yangcheng Huang,Ziyi Yin,Mingjie Wang,Wenjie Cai
{"title":"Enhancing P-wave localization for accurate detection of second-degree and third-degree atrioventricular conduction blocks.","authors":"Wenjing Liu,Li Yan,Yangcheng Huang,Ziyi Yin,Mingjie Wang,Wenjie Cai","doi":"10.1088/1361-6579/ad7ad4","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\r\nThis paper tackles the challenge of accurately detecting second-degree and third-degree atrioventricular block AVB) in electrocardiogram (ECG) signals through automated algorithms. The inaccurate detection of P-waves poses a difficulty in this process. To address this limitation, we propose a reliable method that significantly improves the performances of AVB detection by precisely localizing P-waves.\r\n\r\nAPPROACH\r\nOur proposed P-WaveNet utilized an attention mechanism to extract spatial and temporal features, and employs a BiLSTM module to capture inter-temporal dependencies within the ECG signal. To overcome the scarcity of data for second-degree and third-degree AVB (2AVB,3AVB), a mathematical approach was employed to synthesize pseudo-data. By combining P-wave positions identified by the P-WaveNet with key medical features such as RR interval rhythm and PR intervals, we established a classification rule enabling automatic AVB detection.\r\n\r\nMAIN RESULTS\r\nThe P-WaveNet achieved an F1 score of 93.62% and 91.42% for P-wave localization on the QTDB and LUDB datasets, respectively. In the BUTPDB dataset, the F1 scores for P-wave localization in ECG signals with 2AVB and 3AVB were 98.29% and 62.65%, respectively. Across two independent datasets, the AVB detection algorithm achieved F1 scores of 83.33% and 84.15% for 2AVB and 3AVB, respectively.\r\n\r\nSIGNIFICANCE\r\nOur proposed P-WaveNet demonstrates accurate identification of P-waves in complex ECGs, significantly enhancing AVB detection efficacy. This paper's contributions stem from the fusion of medical expertise with data augmentation techniques and ECG classification. The proposed P-WaveNet demonstrates potential clinical applicability.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad7ad4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
OBJECTIVE
This paper tackles the challenge of accurately detecting second-degree and third-degree atrioventricular block AVB) in electrocardiogram (ECG) signals through automated algorithms. The inaccurate detection of P-waves poses a difficulty in this process. To address this limitation, we propose a reliable method that significantly improves the performances of AVB detection by precisely localizing P-waves.
APPROACH
Our proposed P-WaveNet utilized an attention mechanism to extract spatial and temporal features, and employs a BiLSTM module to capture inter-temporal dependencies within the ECG signal. To overcome the scarcity of data for second-degree and third-degree AVB (2AVB,3AVB), a mathematical approach was employed to synthesize pseudo-data. By combining P-wave positions identified by the P-WaveNet with key medical features such as RR interval rhythm and PR intervals, we established a classification rule enabling automatic AVB detection.
MAIN RESULTS
The P-WaveNet achieved an F1 score of 93.62% and 91.42% for P-wave localization on the QTDB and LUDB datasets, respectively. In the BUTPDB dataset, the F1 scores for P-wave localization in ECG signals with 2AVB and 3AVB were 98.29% and 62.65%, respectively. Across two independent datasets, the AVB detection algorithm achieved F1 scores of 83.33% and 84.15% for 2AVB and 3AVB, respectively.
SIGNIFICANCE
Our proposed P-WaveNet demonstrates accurate identification of P-waves in complex ECGs, significantly enhancing AVB detection efficacy. This paper's contributions stem from the fusion of medical expertise with data augmentation techniques and ECG classification. The proposed P-WaveNet demonstrates potential clinical applicability.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.