Crop yield estimation uncertainties at the regional scale for Saxony, Germany

IF 2 3区 农林科学 Q2 AGRONOMY Agronomy Journal Pub Date : 2024-09-16 DOI:10.1002/agj2.21680
Sebastian Goihl
{"title":"Crop yield estimation uncertainties at the regional scale for Saxony, Germany","authors":"Sebastian Goihl","doi":"10.1002/agj2.21680","DOIUrl":null,"url":null,"abstract":"<p>In times of climate change and global population growth, agricultural yield forecasts play an increasingly important role. For example, predicting yields as early as possible in the event of a drought is crucial for decision-makers in politics, government, and business. The aim of this study was to provide precise yield predictions at agricultural regions as early as possible with a minimum amount of weather data. Random forest models were used for this purpose. Although more than 290,000 datasets were available for analysis, all models tended to be heavily overfitting, which can be explained by the strong fragmentation of the input data by crop, region, and prediction time. The models reacted very differently to unknown datasets. It was found that the regionally trained models achieved lower (≥10%) relative root mean square errors (RRMSEs) than the supra-regionally trained models. Rapeseed and barley achieved good predictions. Wheat had good potential, too. Corn, potatoes, and sugar beet achieved often too high RRMSEs. The results showed that targeted model selection for each region and an extension of the training time series could enable very good regional yield forecasts for rapeseed and cereals in the future.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"3097-3107"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21680","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In times of climate change and global population growth, agricultural yield forecasts play an increasingly important role. For example, predicting yields as early as possible in the event of a drought is crucial for decision-makers in politics, government, and business. The aim of this study was to provide precise yield predictions at agricultural regions as early as possible with a minimum amount of weather data. Random forest models were used for this purpose. Although more than 290,000 datasets were available for analysis, all models tended to be heavily overfitting, which can be explained by the strong fragmentation of the input data by crop, region, and prediction time. The models reacted very differently to unknown datasets. It was found that the regionally trained models achieved lower (≥10%) relative root mean square errors (RRMSEs) than the supra-regionally trained models. Rapeseed and barley achieved good predictions. Wheat had good potential, too. Corn, potatoes, and sugar beet achieved often too high RRMSEs. The results showed that targeted model selection for each region and an extension of the training time series could enable very good regional yield forecasts for rapeseed and cereals in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
德国萨克森州区域范围内作物产量估算的不确定性
在气候变化和全球人口增长的时代,农业产量预测发挥着越来越重要的作用。例如,在发生干旱时尽早预测产量对政治、政府和企业决策者至关重要。本研究的目的是利用最少的气象数据尽早提供农业地区的精确产量预测。为此采用了随机森林模型。虽然有 29 万多个数据集可供分析,但所有模型都有严重的过拟合倾向,这可以用输入数据按作物、地区和预测时间高度分散来解释。这些模型对未知数据集的反应截然不同。研究发现,区域训练模型的相对均方根误差(RRMSE)低于超区域训练模型(≥10%)。油菜籽和大麦的预测结果良好。小麦也有很好的潜力。玉米、马铃薯和甜菜的 RRMSE 往往过高。结果表明,为每个地区选择有针对性的模型并扩展训练时间序列,可以在未来对油菜籽和谷物进行很好的地区产量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy Journal
Agronomy Journal 农林科学-农艺学
CiteScore
4.70
自引率
9.50%
发文量
265
审稿时长
4.8 months
期刊介绍: After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.
期刊最新文献
Ametoctradin + dimethomorph spray frequency affects late blight disease and yield in potato genotypes Issue Information Weed management in organic dryland wheat production in the Pacific Northwest Soil health benefits of compost persist two decades after single application to winter wheat Deriving general principles of agroecosystem multifunctionality with the Diverse Rotations Improve Valuable Ecosystem Services (DRIVES) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1