DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-10 DOI:10.1007/s11705-024-2513-2
Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li
{"title":"DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface","authors":"Mingyi Chen,&nbsp;Zeshan Wang,&nbsp;Yuelun Li,&nbsp;Yuxin Wang,&nbsp;Lei Jiang,&nbsp;Huicong Zuo,&nbsp;Linan Huang,&nbsp;Yuhao Wang,&nbsp;Dong Tian,&nbsp;Hua Wang,&nbsp;Kongzhai Li","doi":"10.1007/s11705-024-2513-2","DOIUrl":null,"url":null,"abstract":"<div><p>The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO<sub>2</sub> (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO<sub>2</sub>(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH<sub>4</sub> on CeO<sub>2</sub> (111) and Zn-substituted CeO<sub>2</sub> (111) surfaces, the calculated results illustrate that the dissociation process of CH<sub>3(ads)</sub> is very difficult on pristine surfaces and unfavorable for CHO<sub>(ads)</sub> on substituted surfaces. Furthermore, the dissociative adsorption of CO and H<sub>2</sub> on the Zn-substituted CeO<sub>2</sub> (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2513-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO2 (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO2(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH4 on CeO2 (111) and Zn-substituted CeO2 (111) surfaces, the calculated results illustrate that the dissociation process of CH3(ads) is very difficult on pristine surfaces and unfavorable for CHO(ads) on substituted surfaces. Furthermore, the dissociative adsorption of CO and H2 on the Zn-substituted CeO2 (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFT 对金属取代 CeO2 (111) 表面氧空位形成和甲烷化学循环干重整的见解
基于密度泛函理论计算,研究了金属取代的 CeO2 (111) 上的氧空位形成能和甲烷的化学循环干重整。计算结果表明,在可以替代 CeO2(111)表面 Ce 原子的各种金属中,Zn 的替代导致氧空位形成能最低。对于 CeO2(111)和 Zn 取代的 CeO2(111)表面上 CH4 的活化,计算结果说明在原始表面上 CH3(吸附)的解离过程非常困难,而在取代表面上 CHO(吸附)的解离过程不利。此外,CO 和 H2 在 Zn 取代的 CeO2 (111) 表面上的解离吸附需要很高的能量,这不利于合成气的生产。这项研究表明,氧空位的过度形成会导致过高的吸附能,从而限制反应中间产物的转化效率。这一发现为载氧材料的设计和优化提供了重要的指导和应用前景,尤其是在化学循环干甲烷重整制合成气领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Corrigendum to "The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma" [J. Ethnopharmacol. 318 (2024) 116862]. Corrigendum to "Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway" [J. Ethnopharmacol. 319 (2024) 117266]. Corrigendum to "The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4" [J. Ethnopharmacol. 337, part 3 (2024) 118975]. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1