Trustworthiness in Retrieval-Augmented Generation Systems: A Survey

Yujia Zhou, Yan Liu, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Zheng Liu, Chaozhuo Li, Zhicheng Dou, Tsung-Yi Ho, Philip S. Yu
{"title":"Trustworthiness in Retrieval-Augmented Generation Systems: A Survey","authors":"Yujia Zhou, Yan Liu, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Zheng Liu, Chaozhuo Li, Zhicheng Dou, Tsung-Yi Ho, Philip S. Yu","doi":"arxiv-2409.10102","DOIUrl":null,"url":null,"abstract":"Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal\nparadigm in the development of Large Language Models (LLMs). While much of the\ncurrent research in this field focuses on performance optimization,\nparticularly in terms of accuracy and efficiency, the trustworthiness of RAG\nsystems remains an area still under exploration. From a positive perspective,\nRAG systems are promising to enhance LLMs by providing them with useful and\nup-to-date knowledge from vast external databases, thereby mitigating the\nlong-standing problem of hallucination. While from a negative perspective, RAG\nsystems are at the risk of generating undesirable contents if the retrieved\ninformation is either inappropriate or poorly utilized. To address these\nconcerns, we propose a unified framework that assesses the trustworthiness of\nRAG systems across six key dimensions: factuality, robustness, fairness,\ntransparency, accountability, and privacy. Within this framework, we thoroughly\nreview the existing literature on each dimension. Additionally, we create the\nevaluation benchmark regarding the six dimensions and conduct comprehensive\nevaluations for a variety of proprietary and open-source models. Finally, we\nidentify the potential challenges for future research based on our\ninvestigation results. Through this work, we aim to lay a structured foundation\nfor future investigations and provide practical insights for enhancing the\ntrustworthiness of RAG systems in real-world applications.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs). While much of the current research in this field focuses on performance optimization, particularly in terms of accuracy and efficiency, the trustworthiness of RAG systems remains an area still under exploration. From a positive perspective, RAG systems are promising to enhance LLMs by providing them with useful and up-to-date knowledge from vast external databases, thereby mitigating the long-standing problem of hallucination. While from a negative perspective, RAG systems are at the risk of generating undesirable contents if the retrieved information is either inappropriate or poorly utilized. To address these concerns, we propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy. Within this framework, we thoroughly review the existing literature on each dimension. Additionally, we create the evaluation benchmark regarding the six dimensions and conduct comprehensive evaluations for a variety of proprietary and open-source models. Finally, we identify the potential challenges for future research based on our investigation results. Through this work, we aim to lay a structured foundation for future investigations and provide practical insights for enhancing the trustworthiness of RAG systems in real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检索增强生成系统中的可信度:调查
检索增强生成(RAG)已迅速发展成为大型语言模型(LLM)开发中的一个重要范式。虽然目前该领域的大部分研究都集中在性能优化,特别是准确性和效率方面,但 RAG 系统的可信度仍是一个有待探索的领域。从积极的角度来看,RAG 系统有望从庞大的外部数据库中为 LLMs 提供有用的最新知识,从而缓解长期存在的幻觉问题。但从负面角度来看,如果检索到的信息不恰当或利用率不高,RAG 系统就有可能产生不良内容。为了解决这些问题,我们提出了一个统一的框架,从六个关键维度评估 RAG 系统的可信度:事实性、稳健性、公平性、透明度、责任性和隐私性。在这一框架内,我们对每个维度的现有文献进行了深入研究。此外,我们还创建了六个维度的评估基准,并对各种专有和开源模型进行了全面评估。最后,我们根据调查结果确定了未来研究的潜在挑战。通过这项工作,我们旨在为未来的研究奠定结构化的基础,并为提高 RAG 系统在实际应用中的可信度提供实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1