Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator

Jun Yin, Zhengxin Zeng, Mingzheng Li, Hao Yan, Chaozhuo Li, Weihao Han, Jianjin Zhang, Ruochen Liu, Allen Sun, Denvy Deng, Feng Sun, Qi Zhang, Shirui Pan, Senzhang Wang
{"title":"Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator","authors":"Jun Yin, Zhengxin Zeng, Mingzheng Li, Hao Yan, Chaozhuo Li, Weihao Han, Jianjin Zhang, Ruochen Liu, Allen Sun, Denvy Deng, Feng Sun, Qi Zhang, Shirui Pan, Senzhang Wang","doi":"arxiv-2409.09253","DOIUrl":null,"url":null,"abstract":"Owing to the unprecedented capability in semantic understanding and logical\nreasoning, the pre-trained large language models (LLMs) have shown fantastic\npotential in developing the next-generation recommender systems (RSs). However,\nthe static index paradigm adopted by current methods greatly restricts the\nutilization of LLMs capacity for recommendation, leading to not only the\ninsufficient alignment between semantic and collaborative knowledge, but also\nthe neglect of high-order user-item interaction patterns. In this paper, we\npropose Twin-Tower Dynamic Semantic Recommender (TTDS), the first generative RS\nwhich adopts dynamic semantic index paradigm, targeting at resolving the above\nproblems simultaneously. To be more specific, we for the first time contrive a\ndynamic knowledge fusion framework which integrates a twin-tower semantic token\ngenerator into the LLM-based recommender, hierarchically allocating meaningful\nsemantic index for items and users, and accordingly predicting the semantic\nindex of target item. Furthermore, a dual-modality variational auto-encoder is\nproposed to facilitate multi-grained alignment between semantic and\ncollaborative knowledge. Eventually, a series of novel tuning tasks specially\ncustomized for capturing high-order user-item interaction patterns are proposed\nto take advantages of user historical behavior. Extensive experiments across\nthree public datasets demonstrate the superiority of the proposed methodology\nin developing LLM-based generative RSs. The proposed TTDS recommender achieves\nan average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric,\ncompared with the leading baseline methods.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the unprecedented capability in semantic understanding and logical reasoning, the pre-trained large language models (LLMs) have shown fantastic potential in developing the next-generation recommender systems (RSs). However, the static index paradigm adopted by current methods greatly restricts the utilization of LLMs capacity for recommendation, leading to not only the insufficient alignment between semantic and collaborative knowledge, but also the neglect of high-order user-item interaction patterns. In this paper, we propose Twin-Tower Dynamic Semantic Recommender (TTDS), the first generative RS which adopts dynamic semantic index paradigm, targeting at resolving the above problems simultaneously. To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender, hierarchically allocating meaningful semantic index for items and users, and accordingly predicting the semantic index of target item. Furthermore, a dual-modality variational auto-encoder is proposed to facilitate multi-grained alignment between semantic and collaborative knowledge. Eventually, a series of novel tuning tasks specially customized for capturing high-order user-item interaction patterns are proposed to take advantages of user historical behavior. Extensive experiments across three public datasets demonstrate the superiority of the proposed methodology in developing LLM-based generative RSs. The proposed TTDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过协调双塔动态语义令牌生成器释放 LLM 的推荐潜力
由于在语义理解和逻辑推理方面具有前所未有的能力,预训练的大型语言模型(LLMs)在开发下一代推荐系统(RSs)方面展现出了巨大的潜力。然而,当前方法所采用的静态索引范式极大地限制了 LLMs 在推荐方面的能力发挥,不仅导致语义知识与协作知识之间的匹配不足,而且忽视了用户与项目之间的高阶交互模式。在本文中,我们提出了双塔动态语义推荐器(TTDS),这是第一个采用动态语义索引范式的生成式 RS,旨在同时解决上述问题。具体来说,我们首次提出了一个动态知识融合框架,将双塔语义标记生成器集成到基于 LLM 的推荐器中,分层为项目和用户分配有意义的语义索引,并据此预测目标项目的语义索引。此外,还提出了一种双模态变异自动编码器,以促进语义知识和协作知识之间的多粒度对齐。最后,还提出了一系列专门用于捕捉高阶用户-物品交互模式的新颖调整任务,以利用用户的历史行为。在三个公共数据集上进行的广泛实验证明了所提出的方法在开发基于 LLM 的生成式 RS 中的优越性。与领先的基线方法相比,所提出的 TTDS 推荐器在命中率和 NDCG 指标上分别平均提高了 19.41% 和 20.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1