Proactive Recommendation in Social Networks: Steering User Interest via Neighbor Influence

Hang Pan, Shuxian Bi, Wenjie Wang, Haoxuan Li, Peng Wu, Fuli Feng, Xiangnan He
{"title":"Proactive Recommendation in Social Networks: Steering User Interest via Neighbor Influence","authors":"Hang Pan, Shuxian Bi, Wenjie Wang, Haoxuan Li, Peng Wu, Fuli Feng, Xiangnan He","doi":"arxiv-2409.08934","DOIUrl":null,"url":null,"abstract":"Recommending items solely catering to users' historical interests narrows\nusers' horizons. Recent works have considered steering target users beyond\ntheir historical interests by directly adjusting items exposed to them.\nHowever, the recommended items for direct steering might not align perfectly\nwith users' interests evolution, detrimentally affecting target users'\nexperience. To avoid this issue, we propose a new task named Proactive\nRecommendation in Social Networks (PRSN) that indirectly steers users' interest\nby utilizing the influence of social neighbors, i.e., indirect steering by\nadjusting the exposure of a target item to target users' neighbors. The key to\nPRSN lies in answering an interventional question: what would a target user's\nfeedback be on a target item if the item is exposed to the user's different\nneighbors? To answer this question, we resort to causal inference and formalize\nPRSN as: (1) estimating the potential feedback of a user on an item, under the\nnetwork interference by the item's exposure to the user's neighbors; and (2)\nadjusting the exposure of a target item to target users' neighbors to trade off\nsteering performance and the damage to the neighbors' experience. To this end,\nwe propose a Neighbor Interference Recommendation (NIRec) framework with two\nkey modules: (1)an interference representation-based estimation module for\nmodeling potential feedback; and (2) a post-learning-based optimization module\nfor optimizing a target item's exposure to trade off steering performance and\nthe neighbors' experience by greedy search. We conduct extensive\nsemi-simulation experiments based on three real-world datasets, validating the\nsteering effectiveness of NIRec.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommending items solely catering to users' historical interests narrows users' horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with users' interests evolution, detrimentally affecting target users' experience. To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users' interest by utilizing the influence of social neighbors, i.e., indirect steering by adjusting the exposure of a target item to target users' neighbors. The key to PRSN lies in answering an interventional question: what would a target user's feedback be on a target item if the item is exposed to the user's different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item's exposure to the user's neighbors; and (2) adjusting the exposure of a target item to target users' neighbors to trade off steering performance and the damage to the neighbors' experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two key modules: (1)an interference representation-based estimation module for modeling potential feedback; and (2) a post-learning-based optimization module for optimizing a target item's exposure to trade off steering performance and the neighbors' experience by greedy search. We conduct extensive semi-simulation experiments based on three real-world datasets, validating the steering effectiveness of NIRec.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网络中的主动推荐:通过邻居影响引导用户兴趣
仅根据用户的历史兴趣推荐项目会缩小用户的视野。然而,直接引导的推荐项目可能与用户的兴趣演变不完全一致,从而对目标用户的体验造成不利影响。为了避免这个问题,我们提出了一个名为 "社交网络中的主动推荐"(PRSN)的新任务,通过利用社交网络中邻居的影响力来间接引导用户的兴趣,即通过调整目标项目在目标用户邻居中的曝光率来实现间接引导。PRSN的关键在于回答一个干预性问题:如果目标用户的目标项目被暴露在其不同的邻居面前,那么他对该项目会有怎样的反馈?为了回答这个问题,我们采用了因果推理方法,并将PRSN 形式化为(1)估算用户对某一物品的潜在反馈,在该物品暴露于用户邻居的网络干扰下;(2)调整目标物品暴露于目标用户邻居的程度,以权衡转向性能和对邻居体验的损害。为此,我们提出了一个邻居干扰推荐(NIRec)框架,其中包含两个关键模块:(1)基于干扰表示的估计模块,用于模拟潜在的反馈;(2)基于后学习的优化模块,用于优化目标项目的曝光率,通过贪婪搜索来权衡转向性能和邻居体验。我们基于三个真实世界的数据集进行了广泛的半仿真实验,验证了 NIRec 的转向效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1